

Fedora Infrastructure Puppet Training

Mike McGrath
Fedora Infrastructure

2008-09-15

Puppet Configuration Management

● Controls what config files end up where
● Package installation, removal
● Service restarts, chkconfig, service X start
● Dep checking (file level, service level, etc)

Basic Theory

● Simple provisioning
● Reproducability
● Set once, deploy everywhere
● Auditing
● Automation

Key Terms

● Puppetmaster – The primary central
configuration server

● Node – Individual hosts
● Manifest – Anything written in 'puppet language'

including classes, nodes, etc.

Master/Node Model

● Puppetmaster uses key based auth and
provides a manifest to the nodes.

● Nodes register with puppetmaster on their first
run. These requests are signed with puppetca.

● Nodes check in every 30 minutes to pull any
updates.

● The nodes do all the translation of the manifest
into a localconfig.yaml

● bitbucket

Using Puppet - Language

● Manifest Language Example

file { '/etc/ssh/sshd_config':

source => 'puppet:///configs/system/sshd_config',

mode => 0600,

notify => Service['sshd'],

require => Package['openssh-server'],

}

Using Puppet - Packages

● Continuing with ssh example

package { openssh-server:

ensure => present,

}

package { telnet-server:

ensure => absent,

}

Using Puppet - Services

● Continuing with ssh example
service { sshd:

ensure => running,

enable => true,

require => Package['openssh-server']

}

Using Puppet - Classes
● Continuing with ssh example
● Classes tie everything together
class ssh-server {

file { '/etc/ssh/sshd_config':

source => 'puppet:///configs/system/sshd_config',

mode => 0600,

notify => Service['sshd'],

require => Package['openssh-server'],

}

package { openssh-server:

ensure => present,

}

service { sshd:

ensure => running,

enable => true,

require => Package['openssh-server']

}

}

Quick Review

● File – a resource for configuration and other
types of files

● Service – a resource for actual running
processes

● Package – a resource for actual package
management

● Class – Ties file, service and package types
together (as well as other types not yet
discussed)

Nodes

● Each host is a node
● Nodes should generally not define resources in

the actual definition.
node { app1:

include ssh-server

}

Server Group Abstraction

● Technique used to group like classes together
to create a server or node type

● Uses classes that include other classes
● The basic workflow is:

– Node includes servergroup classes

– Servergroup classes include worker classes

● Example:
class proxyServer {

include proxy

include ssh-server

}

Server Group Abstraction (contd)

● The node would include our proxyServer
servergroup class

● Example
node { proxy1:

include proxyServer

}

Modules

● Defined on a per package basis
● Self contained
● Sharable
● Contain config files, templates, manifests, etc.

Module Layout

● modules/modulename/
– files/

– manifests/
● manifests/init.pp

– plugins/

– templates/

– README

Module – SSH server

● Lets convert our ssh-server class from earlier
into a module.

● Module names should be based on base
package name.
– openssh, not openssh-server

● Starting out we only need the README,
manifests/init.pp and files/ directory

Modules - init.pp

● Located in openssh/manifests/init.pp
● Is auto included by puppet
● Slightly different class format:
class openssh::sshd {

file { '/etc/ssh/sshd_config':

source => 'puppet:///openssh/sshd_config',

mode => 0600,

notify => Service['sshd'],

require => Package['openssh-server'],

}

}

Modules - Exceptions

● A few exceptions exist to the module naming
scheme

● Custom scripts should now go in the 'scripts'
module

● Legacy code not yet moved is still in the old
manifests/ and configs/ format

● Private repo stuff (passwords and things) can
be referenced in modules, but should still be
stored in the private repo for security

Modules – What's changed

● Specific to Fedora Infrastructure
● We used to have configfile and apachefile

– All requisites must be explicit

● All 'source =>' parameters must have puppet:///

Advanced Puppet Topics

● Puppet Variables
● Facter
● Basic logic syntax (if, case, arrays)
● Config File templating
● Custom defines

Puppet Variables

● Take on formatting similar to php
● $groups='sysadmin-main'

● $tcpPorts = [80, 443]

● $otherGroups = "$groups foo"

● $otherGroups2 = '$groups foo'

Facter

● Seperate application, yum install facter.
● Can be invoked by just running 'facter'.
● Any variable in facter can be referenced by

puppet.
● Custom facter recepes can be written.
● Example: hostanme => proxy1

Custom Facter Recipes

● Written in Ruby
● Place .rb files on the local machine in

/usr/lib/ruby/site_ruby/1.8/facter/your-recipe.rb

● Basic example:
Facter.add('variableName') do

setcode do

"'Variable Value'"

end

end

if Logic – Manifest

● Can be used in most parts of a manifest.
● Example:
if $proxy_backup {

include proxy_backup_data

} else {

include proxy_live_data

}

case Logic - Manifest

● Similar to if can be used in most places in a
manfiest

● Example:
case $architecture {

'i386' : {

include i386-host

}

'x86_64': {

package { electric-avenue:

ensure => present

}

}

}

Templating

● Use an ERB templating format
● Converted tags between <% and %>
● <%= Replaces with a result %>
● <%= Replaces with a result, no new line at end

-%>
● <%# Comment %>
● Example:
<%= architecture %>

Templating – if

● Similar to manifest logic.
● Variable names in ERB do not prepend $
● Example:
<% if hostname == 'proxy1' %>

ThisIsAProxyHost=True

<% else %>

ThisIsAnAppServer=True

#This Host Isn't Proxy1

SpecialVar=<%= specialValue %>

<% end %>

Using a template

● Place templates in the templates/ directory not
files/.

● Append .erb to all filenames, for example
httpd.conf.erb

● In the manifest don't use
source => 'puppet:///modulename/template.conf'
instead use
content => template('modulename/templateName.conf.erb')

Custom Defines

● Mostly a manifest template used with
substitution

● Example is selinux boolians
● allow_httpd_mod_auth_pam
● Normally set with setsebool -P

allow_httpd_mod_auth_pam=on

● Normally checked with getsebool
allow_httpd_mod_auth_pam

Custom Defines - selinux_bool

● We're going to define a selinux_bool type
● $name is passed automatically
define selinux_bool($bool) {

exec { "/usr/sbin/setsebool -P $name=$bool":

unless => "/usr/sbin/getsebool $name | grep -qe
$bool$",

cwd => '/',

}

}

selinux_bool { 'allow_httpd_mod_auth_pam':

bool => 'on',

}

exec

● Should be avoided when possible
● Can be 'notify =>'ed
exec { 'fix_sendmail':

command => '/etc/init.d/sendmail stop; /bin/rpm -e
sendmail; /etc/init.d/postfix restart',

onlyif => '/usr/bin/pgrep sendmail',

cwd => '/',

}

Common tasks - Directory

● Create a directory
● Does not auto create parent directories
● Example:
file { ['/srv/web', '/srv/web/cache']:

ensure => directory

}

● Could not require => File['/srv']
● Also cannot require => File['/srv/web/']
● Could require => File['/srv/web']

Common Tasks - restart

● Using httpd as an example
● Service httpd restart is the default
● Graceful is more graceful, includes configtest
service { httpd:

ensure => true,

enable => true,

restart => '/etc/init.d/httpd graceful'

}

Git workflow

● Git manages modules, configs and manfiests
● Emails get sent on every git push
● Hook syncs git HEAD with what puppetmaster

actually uses
● Test new configs with puppetd -t --noop

The End

● Questions? - mmcgrath@redhat.com
● See reductivelabs.com for more info
● Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

