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Puppet Configuration Management

● Controls what config files end up where
● Package installation, removal
● Service restarts, chkconfig, service X start
● Dep checking (file level, service level, etc)



  

Basic Theory

● Simple provisioning
● Reproducability
● Set once, deploy everywhere
● Auditing
● Automation



  

Key Terms

● Puppetmaster – The primary central 
configuration server

● Node – Individual hosts
● Manifest – Anything written in 'puppet language' 

including classes, nodes, etc.



  

Master/Node Model

● Puppetmaster uses key based auth and 
provides a manifest to the nodes.

● Nodes register with puppetmaster on their first 
run.  These requests are signed with puppetca.

● Nodes check in every 30 minutes to pull any 
updates.

● The nodes do all the translation of the manifest 
into a localconfig.yaml

● bitbucket



  

Using Puppet - Language

● Manifest Language Example

file { '/etc/ssh/sshd_config':

source => 'puppet:///configs/system/sshd_config',

mode => 0600,

notify => Service['sshd'],

require => Package['openssh-server'],

}



  

Using Puppet - Packages

● Continuing with ssh example

package { openssh-server:

ensure => present,

}

package { telnet-server:

ensure => absent,

}



  

Using Puppet - Services

● Continuing with ssh example
service { sshd:

ensure => running,

enable => true,

require => Package['openssh-server']

}



  

Using Puppet - Classes
● Continuing with ssh example
● Classes tie everything together
class ssh-server {

file { '/etc/ssh/sshd_config':

source => 'puppet:///configs/system/sshd_config',

mode => 0600,

notify => Service['sshd'],

require => Package['openssh-server'],

}

package { openssh-server:

ensure => present,

}

service { sshd:

ensure => running,

enable => true,

require => Package['openssh-server']

}

}



  

Quick Review

● File – a resource for configuration and other 
types of files

● Service – a resource for actual running 
processes

● Package – a resource for actual package 
management

● Class – Ties file, service and package types 
together (as well as other types not yet 
discussed)



  

Nodes

● Each host is a node
● Nodes should generally not define resources in 

the actual definition.
node { app1:

include ssh-server

}



  

Server Group Abstraction

● Technique used to group like classes together 
to create a server or node type

● Uses classes that include other classes
● The basic workflow is:

– Node includes servergroup classes

– Servergroup classes include worker classes

● Example:
class proxyServer {

include proxy

include ssh-server

}



  

Server Group Abstraction (contd)

● The node would include our proxyServer 
servergroup class

● Example
node { proxy1:

include proxyServer

}



  

Modules

● Defined on a per package basis
● Self contained
● Sharable
● Contain config files, templates, manifests, etc.



  

Module Layout

● modules/modulename/
– files/

– manifests/
● manifests/init.pp

– plugins/

– templates/

– README



  

Module – SSH server

● Lets convert our ssh-server class from earlier 
into a module.

● Module names should be based on base 
package name.
– openssh, not openssh-server

● Starting out we only need the README, 
manifests/init.pp and files/ directory



  

Modules - init.pp

● Located in openssh/manifests/init.pp
● Is auto included by puppet
● Slightly different class format:
class openssh::sshd {

file { '/etc/ssh/sshd_config':

source => 'puppet:///openssh/sshd_config',

mode => 0600,

notify => Service['sshd'],

require => Package['openssh-server'],

}

}



  

Modules - Exceptions

● A few exceptions exist to the module naming 
scheme

● Custom scripts should now go in the 'scripts' 
module

● Legacy code not yet moved is still in the old 
manifests/ and configs/ format

● Private repo stuff (passwords and things) can 
be referenced in modules, but should still be 
stored in the private repo for security



  

Modules – What's changed

● Specific to Fedora Infrastructure
● We used to have configfile and apachefile

– All requisites must be explicit

● All 'source =>' parameters must have puppet:///



  

Advanced Puppet Topics

● Puppet Variables
● Facter
● Basic logic syntax (if, case, arrays)
● Config File templating
● Custom defines



  

Puppet Variables

● Take on formatting similar to php
● $groups='sysadmin-main'

● $tcpPorts = [ 80, 443 ]

● $otherGroups = "$groups foo"

● $otherGroups2 = '$groups foo'



  

Facter

● Seperate application, yum install facter.
● Can be invoked by just running 'facter'.
● Any variable in facter can be referenced by 

puppet.
● Custom facter recepes can be written.
● Example: hostanme => proxy1



  

Custom Facter Recipes

● Written in Ruby
● Place .rb files on the local machine in 

/usr/lib/ruby/site_ruby/1.8/facter/your-recipe.rb

● Basic example:
Facter.add('variableName') do

setcode do

"'Variable Value'"

end

end



  

if Logic – Manifest

● Can be used in most parts of a manifest.
● Example:
if $proxy_backup {

include proxy_backup_data

} else {

include proxy_live_data

}



  

case Logic - Manifest

● Similar to if can be used in most places in a 
manfiest

● Example:
case $architecture {

'i386' : {

include i386-host

}

'x86_64': {

package { electric-avenue:

ensure => present

}

}

}



  

Templating

● Use an ERB templating format
● Converted tags between <% and %>
● <%= Replaces with a result %>
● <%= Replaces with a result, no new line at end 

-%>
● <%# Comment %>
● Example:
<%= architecture %>



  

Templating – if

● Similar to manifest logic.
● Variable names in ERB do not prepend $
● Example:
<% if hostname == 'proxy1' %>

ThisIsAProxyHost=True

<% else %>

ThisIsAnAppServer=True

#This Host Isn't Proxy1

SpecialVar=<%= specialValue %>

<% end %>



  

Using a template

● Place templates in the templates/ directory not 
files/.

● Append .erb to all filenames, for example 
httpd.conf.erb

● In the manifest don't use 
source => 'puppet:///modulename/template.conf' 
instead use 
content => template('modulename/templateName.conf.erb')



  

Custom Defines

● Mostly a manifest template used with 
substitution

● Example is selinux boolians
● allow_httpd_mod_auth_pam
● Normally set with setsebool -P 

allow_httpd_mod_auth_pam=on

● Normally checked with getsebool 
allow_httpd_mod_auth_pam



  

Custom Defines - selinux_bool

● We're going to define a selinux_bool type
● $name is passed automatically
define selinux_bool($bool) {

exec { "/usr/sbin/setsebool -P $name=$bool":

unless => "/usr/sbin/getsebool $name | grep -qe 
$bool$",

cwd => '/',

}

}

selinux_bool { 'allow_httpd_mod_auth_pam':

bool => 'on',

}



  

exec

● Should be avoided when possible
● Can be 'notify =>'ed
exec { 'fix_sendmail':

command => '/etc/init.d/sendmail stop; /bin/rpm -e 
sendmail; /etc/init.d/postfix restart',

onlyif => '/usr/bin/pgrep sendmail',

cwd => '/',

}



  

Common tasks - Directory

● Create a directory
● Does not auto create parent directories
● Example:
file { ['/srv/web', '/srv/web/cache']:

ensure => directory

}

● Could not require => File['/srv']
● Also cannot require => File['/srv/web/']
● Could require => File['/srv/web']



  

Common Tasks - restart

● Using httpd as an example
● Service httpd restart is the default
● Graceful is more graceful, includes configtest
service { httpd:

ensure => true,

enable => true,

restart => '/etc/init.d/httpd graceful'

}



  

Git workflow

● Git manages modules, configs and manfiests
● Emails get sent on every git push
● Hook syncs git HEAD with what puppetmaster 

actually uses
● Test new configs with puppetd -t --noop



  

The End

● Questions? - mmcgrath@redhat.com
● See reductivelabs.com for more info
● Thank you
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