
Documentation 0.1

RPM Guide
short descriptor

Dude McDude

RPM Guide

Documentation 0.1 RPM Guide
short descriptor
Edition 0

Author Dude McDude dude.mcdude@myorg.org
Copyright © 2008 YOUR NAME GOES HERE 'RPM_Guide.ent'

Copyright © 2008 YOUR NAME GOES HERE 'RPM_Guide.ent'.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat,
designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with
CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the
original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

For guidelines on the permitted uses of the Fedora trademarks, refer to https://fedoraproject.org/wiki/
Legal:Trademark_guidelines.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

All other trademarks are the property of their respective owners.

A short overview and summary of the book's subject and purpose, traditionally no more than one
paragraph long. Note: the abstract will appear in the front matter of your book and will also be placed
in the #description field of the book's RPM spec file.

mailto:dude.mcdude@myorg.org
http://creativecommons.org/licenses/by-sa/3.0/
https://fedoraproject.org/wiki/Legal:Trademark_guidelines
https://fedoraproject.org/wiki/Legal:Trademark_guidelines

iii

Introducing Package Management xiii
1. Installing, Removing, and Upgrading Applications ... xiii
2. Overcoming the Installation Obstacles ... xiv

2.1. Application-level utilities .. xv
2.2. Built-in system utilities ... xv

3. Linux Software Management Tools: Packages .. xvi
4. Summary .. xviii

1. Introduction to RPM 1
1.1. The Need for Linux Package Management Systems ... 1
1.2. RPM Design Goals .. 3

1.2.1. Ease of use .. 3
1.2.2. Package-oriented focus ... 4
1.2.3. Package upgradability .. 4
1.2.4. Package interdependencies ... 4
1.2.5. Query capabilities .. 5
1.2.6. Package verification ... 5
1.2.7. Multiple architectures ... 6
1.2.8. Pristine sources ... 6

1.3. RPM Terminology ... 7
1.4. Summary ... 9

2. RPM Overview 11
2.1. Understanding the Package File .. 11

2.1.1. RPM file format ... 11
2.1.2. Binary RPMs and Source RPMs ... 12
2.1.3. Source RPMs .. 13

2.2. Querying the RPM Database .. 13
2.3. Running RPM Commands .. 14

2.3.1. Working with the rpm command ... 15
2.3.2. Other RPM commands .. 16

2.4. Summary ... 17

3. Using RPM 19
3.1. The rpm Command .. 19
3.2. Upgrading and Installing Software ... 19

3.2.1. Upgrading with the rpm command .. 20
3.2.2. Upgrading packages .. 31
3.2.3. Freshening up ... 33
3.2.4. Installing Packages .. 33
3.2.5. Installing Over the Internet ... 34
3.2.6. Installing source RPMs .. 35

3.3. Removing Software .. 36
3.3.1. Checking that the package has been removed .. 37
3.3.2. Removing multiple packages at a time .. 37
3.3.3. Options when removing packages .. 37

3.4. Other rpm Command Options ... 38
3.5. Summary ... 40

4. Using the RPM Database 41
4.1. Querying the RPM Database .. 41

4.1.1. Querying packages .. 41
4.1.2. Querying everything ... 42

RPM Guide

iv

4.1.3. Refining the query ... 43
4.1.4. Finding which packages own files ... 46

4.2. Getting Information on Packages ... 47
4.2.1. Describing packages .. 48
4.2.2. Package groups .. 49
4.2.3. Listing the files in a package .. 49
4.2.4. Listing the configuration files for a package ... 52
4.2.5. Listing the documentation files for a package .. 53
4.2.6. Listing the state of the files in a package .. 54
4.2.7. Listing the scripts in a package .. 55
4.2.8. Listing what has changed ... 58
4.2.9. Combining queries ... 59
4.2.10. Creating custom queries .. 61
4.2.11. Other queries ... 71

4.3. Getting Information on Package Files .. 71
4.4. Verifying Installed RPM Packages ... 72

4.4.1. Verifying your entire system ... 73
4.4.2. Controlling the verification .. 74

4.5. Working With the RPM Database .. 74
4.5.1. Backing up the RPM database ... 76
4.5.2. Rebuilding the RPM database .. 76
4.5.3. Creating a new RPM database ... 76

4.6. Summary ... 77

5. Package Dependencies 79
5.1. Understanding the Dependency Concept ... 79

5.1.1. Capabilities .. 79
5.1.2. Version dependencies .. 81
5.1.3. Conflicts .. 81
5.1.4. Obsoletes .. 81

5.2. Checking for Dependencies .. 82
5.2.1. Determining the capabilities a package requires .. 82
5.2.2. Determining the capabilities a package provides .. 85
5.2.3. Checking for conflicts ... 86
5.2.4. Determining which packages require a certain capability 87
5.2.5. Determining which package provides a certain capability 91

5.3. Triggers ... 92
5.4. Summary ... 95

6. Transactions 97
6.1. Understanding Transactions .. 97

6.1.1. When do you need transactions? ... 97
6.1.2. Backing out of transactions .. 98

6.2. Transactions with the rpm Command ... 98
6.2.1. Transaction IDs ... 100
6.2.2. Rolling Back Transactions .. 102

6.3. Saving Old Packages ... 102
6.4. Summary ... 104

7. RPM Management Software 105
7.1. Locating RPMs ... 105

7.1.1. rpmfind and rpm2html .. 105
7.1.2. RPM Sites On the Internet ... 109

v

7.2. Graphical RPM Management .. 110
7.2.1. Nautilus ... 111
7.2.2. Red Hat Package Management .. 111
7.2.3. KPackage .. 112
7.2.4. Gnome-RPM .. 113

7.3. Extending RPM Management .. 114
7.3.1. AutoRPM ... 115
7.3.2. AutoUpdate ... 116
7.3.3. The Red Hat Network and up2date ... 117
7.3.4. Current .. 119
7.3.5. urpmi and RpmDrake ... 119
7.3.6. apt-rpm ... 120
7.3.7. The poldek .. 122

7.4. Summary ... 122

8. Creating RPMs: An Overview 125
8.1. Preparing to Build RPMs .. 125

8.1.1. Planning what you want to build ... 126
8.1.2. Gathering the software to package ... 126
8.1.3. Creating a reproducible build of the software ... 127
8.1.4. Planning for Upgrades ... 131
8.1.5. Outlining Any Dependencies ... 131

8.2. Building RPMs .. 131
8.2.1. Setting up the directory structure .. 132
8.2.2. Placing your sources into the directory structure .. 133
8.2.3. Creating the spec file ... 133
8.2.4. Building RPMs with the rpmbuild command ... 137

8.3. Verifying Your RPMS .. 140
8.4. Summary ... 141

9. Working with Spec Files 143
9.1. Reading Spec Files .. 143
9.2. Writing Spec Files .. 144

9.2.1. Comments ... 144
9.2.2. Storing spec files on disk ... 145

9.3. Defining Package Information .. 145
9.3.1. Describing the package .. 145
9.3.2. Setting build locations .. 149
9.3.3. Naming source files ... 149
9.3.4. Naming patches ... 150

9.4. Controlling the Build ... 151
9.4.1. Preparing for the build ... 151
9.4.2. Building the software .. 153
9.4.3. Installing the software .. 155
9.4.4. Cleaning up after the build ... 156
9.4.5. Defining installation scripts ... 156

9.5. Filling the List of Files ... 157
9.5.1. Using wildcards ... 158
9.5.2. Naming directories of files .. 158
9.5.3. Marking files as documentation or configuration files .. 159
9.5.4. Setting file attributes .. 160
9.5.5. Verifying the %files section ... 161

RPM Guide

vi

9.5.6. Filling the list of files automatically .. 162
9.5.7. Handling RPM build errors for unpackaged files ... 162

9.6. Adding Change Log Entries .. 163
9.7. Defining Spec File Macros .. 163

9.7.1. Built-in macros ... 163
9.7.2. Spec file-specific macros .. 164
9.7.3. Defining new macros ... 165
9.7.4. Specifying parameters to macros .. 165

9.8. Creating XML Spec Files .. 166
9.9. Summary ... 169

10. Advanced RPM Packaging 171
10.1. Defining Package Dependencies ... 171

10.1.1. Naming dependencies .. 171
10.1.2. Setting prerequisites ... 173
10.1.3. Naming build dependencies .. 174
10.1.4. Generating dependencies automatically ... 174

10.2. Setting Triggers .. 174
10.3. Writing Verification Scripts ... 179
10.4. Creating Subpackages .. 179

10.4.1. Providing information for subpackages .. 180
10.4.2. Defining scripts for subpackages ... 182
10.4.3. Building subpackages ... 182

10.5. Creating Relocatable Packages ... 183
10.5.1. Setting up the prefixes ... 183
10.5.2. Define the files section ... 183
10.5.3. Problems creating relocatable packages .. 184

10.6. Defining Conditional Builds .. 184
10.6.1. Defining conditional macros .. 185
10.6.2. Using conditional blocks ... 185
10.6.3. Using architecture-based conditionals .. 186

10.7. Summary .. 188

11. Controlling the Build with rpmbuild 191
11.1. Building RPMs with the rpmbuild Command ... 191

11.1.1. Customizing the build ... 191
11.1.2. Testing the build ... 192
11.1.3. Debugging the build ... 192
11.1.4. Cleaning up ... 193
11.1.5. Building for other platforms ... 193

11.2. Building RPMs Without an External Spec File ... 195
11.2.1. Options for working with tar archives ... 196
11.2.2. The expected archive structure ... 196

11.3. Working with Source RPMs ... 197
11.3.1. Rebuilding binary RPMS from source RPMs .. 197
11.3.2. Recompiling binaries from source RPMs .. 200
11.3.3. SRPMS? Finding source RPMs .. 201

11.4. Signing Built RPMs ... 201
11.4.1. Checking that the GPG software is installed ... 201
11.4.2. Configuring a signature ... 201
11.4.3. Signing with the rpmbuild command .. 204
11.4.4. Signing with the rpm command ... 204

vii

11.4.5. Verifying signatures .. 204
11.4.6. Importing public keys .. 206
11.4.7. Getting the Red Hat public key ... 207

11.5. Summary .. 208

12. Supplemental Packaging Software 209
12.1. Packaging Aids ... 209

12.1.1. Using VIM spec plugins to improve spec file editing .. 209
12.1.2. Adding functions with emacs rpm-spec-mode ... 212
12.1.3. Validating and debugging spec files with rpmlint ... 215
12.1.4. Generating the %files section with RUST .. 216
12.1.5. setup.sh and MakeRPM.pl .. 217
12.1.6. Manipulating Package Files with rpm2cpio ... 218

12.2. Summary .. 224

13. Packaging Guidelines 225
13.1. Avoiding Common Problems ... 225

13.1.1. Scan the mailing lists ... 225
13.1.2. Use rpmbuild ... 226
13.1.3. Don’t try to defeat the system ... 226
13.1.4. Turn off automatic dependency generation .. 226
13.1.5. Don't list directories in %files .. 227
13.1.6. Handling circular dependencies .. 227

13.2. Following Good Practices .. 228
13.2.1. Preparation .. 228
13.2.2. Building ... 230

13.3. Summary .. 232

14. Automating RPM with Scripts 233
14.1. Scripting ... 233
14.2. Distinguishing Scripting Languages from Programming Languages 234
14.3. Deciding When to Program and When to Script .. 234
14.4. Shell Scripting Basics ... 235

14.4.1. Writing a script ... 235
14.4.2. Running a script .. 235
14.4.3. Problems running scripts .. 236
14.4.4. Turning a script into a command ... 236
14.4.5. Passing command-line options to your script ... 239

14.5. Examining RPM Files .. 240
14.6. Querying the RPM Database ... 242

14.6.1. Querying for all packages installed at the same time 242
14.6.2. Reading HTML documentation for a package ... 243

14.7. Where to Go From Here ... 243
14.8. Summary .. 244

15. Programming RPM with C 245
15.1. Programming with the C Library .. 246

15.1.1. Setting Up a C Programming Environment .. 246
15.1.2. Setting Up the RPM Programming Environment ... 246
15.1.3. Using the RPM Library ... 246
15.1.4. Compiling and Linking RPM Programs .. 247
15.1.5. Getting information on your RPM environment ... 249

15.2. The Power of popt .. 253

RPM Guide

viii

15.2.1. Popt aliases ... 253
15.2.2. Programming with popt .. 253
15.2.3. Handling Errors .. 258
15.2.4. Running a popt example .. 259
15.2.5. Handling rpm command-line options .. 263

15.3. Working with RPM Files .. 264
15.3.1. Opening RPM files ... 264
15.3.2. Reading the RPM lead and signature .. 264
15.3.3. Reading header information .. 265
15.3.4. A shortcut to header information ... 268
15.3.5. Closing RPM files .. 268

15.4. Programming with the RPM Database ... 269
15.4.1. Database iterators .. 269
15.4.2. Dependency Sets ... 270

15.5. Comparing an RPM File to an Installed Package .. 272
15.6. Where to Go from Here .. 281
15.7. Summary .. 282

16. Programming RPM with Python 283
16.1. Setting Up a Python Development Environment .. 283

16.1.1. Installing the base Python packages ... 283
16.1.2. Using Python for graphics .. 283

16.2. The Python API Hierarchy ... 284
16.3. Programming with the RPM Database ... 284

16.3.1. Accessing the RPM database ... 285
16.3.2. Querying the RPM database ... 286
16.3.3. Examining the package header ... 288
16.3.4. Querying for specific packages ... 290
16.3.5. Printing information on packages .. 291
16.3.6. Refining queries ... 294

16.4. Reading Package Files ... 296
16.4.1. Reading headers from package files ... 296
16.4.2. Setting the verification flags .. 297

16.5. Dependency Comparisons ... 298
16.6. Installing and Upgrading Packages .. 300

16.6.1. Building up the transaction set .. 300
16.6.2. Transaction elements ... 301
16.6.3. Checking and reordering the transaction elements ... 303
16.6.4. Running the transaction .. 305

16.7. Where to Go from Here .. 311
16.8. Summary .. 311

17. Programming RPM with Perl 313
17.1. Getting and Using the Perl RPM Modules .. 313
17.2. Working with RPM Files .. 314

17.2.1. Opening package files .. 314
17.2.2. Listing tags from the package ... 314
17.2.3. Convenience methods .. 315
17.2.4. Listing the name and version .. 315
17.2.5. Checking whether the package is a source package 316

17.3. Programming with the RPM Database ... 316
17.3.1. Opening the database .. 317

ix

17.3.2. Finding packages ... 317
17.3.3. Iterating over packages .. 317
17.3.4. Additional query subroutines ... 318
17.3.5. Getting information on packages ... 321
17.3.6. Comparing versions ... 326
17.3.7. Closing the database ... 328

17.4. Where to Go from Here .. 328
17.5. Summary .. 329

18. Using RPM on Non-Red Hat Linuxes 331
18.1. Troubleshooting RPM Installation Issues .. 331

18.1.1. Dealing with RPM versions ... 331
18.1.2. Dealing with divisions of software into packages .. 332
18.1.3. Dealing with dependency issues ... 332
18.1.4. Dealing with install locations ... 333
18.1.5. When all else fails, rebuild from the source package 334

18.2. Handling Problems Building RPMs ... 334
18.2.1. Writing distribution-specific packages .. 334
18.2.2. Dealing with automatic dependency generation .. 335
18.2.3. Dealing with different macros .. 336
18.2.4. Making relocatable packages .. 336
18.2.5. Creating an RPM build environment .. 336

18.3. Dealing with Non-RPM-Based Linux Versions ... 339
18.3.1. Handling non-RPM packages with alien ... 339

18.4. Standardizing RPMs ... 339
18.4.1. Filesystem Hierarchy Standard ... 340
18.4.2. RPM adoption .. 340

18.5. Summary .. 340

19. RPM on Other Operating Systems 341
19.1. Running RPM on Other Operating Systems ... 341

19.1.1. Getting RPM for your system .. 342
19.1.2. Running RPM on Windows ... 343

19.2. Bootstrapping RPM On Other Operating Systems ... 343
19.2.1. Downloading the RPM software .. 344
19.2.2. Extracting the software ... 344
19.2.3. Reading the INSTALL file ... 344
19.2.4. Libraries required by RPM .. 344
19.2.5. Tools for building RPM ... 345
19.2.6. Compiling RPM .. 345
19.2.7. Handling problems ... 346

19.3. Setting Up the RPM System .. 347
19.3.1. Setting up the RPM database ... 347
19.3.2. Creating the RPM environment ... 351

19.4. Creating Non-Linux RPMS .. 352
19.4.1. Setting up a build environment ... 352
19.4.2. Cross-building packages ... 353

19.5. Summary .. 354

20. Customizing RPM Behavior 357
20.1. Customizing with RPM Macros .. 357

20.1.1. Defining macros ... 357
20.1.2. Customizing Macros ... 359

RPM Guide

x

20.2. Configuring RPM Settings ... 359
20.2.1. Viewing the current settings .. 359
20.2.2. Locating the rpmrc files .. 360
20.2.3. Changing settings .. 361

20.3. Adding Popt Aliases .. 363
20.3.1. Defining aliases ... 363
20.3.2. Customizing popt aliases .. 365

20.4. Summary .. 365

21. RPM Command Reference 367
21.1. The rpm Command ... 367

21.1.1. Upgrade, freshen, and install options .. 368
21.1.2. Erase options .. 369
21.1.3. Signature options ... 370
21.1.4. Verify options ... 370
21.1.5. Database options ... 371
21.1.6. Miscellaneous options .. 371

21.2. The rpmbuild Command .. 372
21.2.1. Building from a spec file ... 372
21.2.2. Building from a compressed tar archive ... 373
21.2.3. Rebuilding RPMs from source RPMs .. 373
21.2.4. Customizing the build ... 373

22. Spec File Syntax 375
22.1. Package Information Tags ... 375

22.1.1. Comments ... 376
22.1.2. Build settings ... 376
22.1.3. Dependency tags ... 376
22.1.4. Source files ... 377

22.2. Macros ... 378
22.2.1. Variable definition macros ... 378
22.2.2. Conditional macros .. 379
22.2.3. Built-in macros ... 380

22.3. Build Sections .. 380
22.3.1. Build preparation .. 380
22.3.2. Build .. 381
22.3.3. Installation ... 381
22.3.4. Clean up ... 381
22.3.5. Install and uninstall scripts .. 381

22.4. File Tags .. 382
22.4.1. Making relocatable packages .. 382

22.5. The Change Log .. 383

23. RPM Feature Evolution 385

24. RPM Package File Structure 389
24.1. The Package File ... 389

24.1.1. The file identifier .. 389
24.1.2. The signature .. 390
24.1.3. The header .. 390
24.1.4. The payload .. 395

25. RPM Resources 397
25.1. Finding RPM Sites .. 397

xi

25.1.1. The main rpm.org site .. 397
25.1.2. RPM locator sites .. 397
25.1.3. RPM tools sites ... 398
25.1.4. Programming sites ... 399
25.1.5. Sites related to RPM .. 399

25.2. Accessing RPM Mailing Lists and Newsgroups ... 399

26. Linux Text Editors and Development Tools 401
26.1. General Text Editors ... 401
26.2. Programming Text Editors ... 401
26.3. Integrated Development Environments for C Programming .. 402
26.4. Integrated Development Environments for Python Programming 402

27. Licensing RPM 405
27.1. The GNU General Public License .. 405

A. Revision History 411

Index 413

xii

xiii

Introducing Package Management
This chapter covers:

• Issues in software management

• Examining Linux management tools

• Introducing the package concept

In 1991, a young Finnish graduate student started a new personal hobby. He had acquired an
Intel 386 computer and had spent a few weeks exploring it and playing early PC computer games.
Eventually, however, he grew bored with the limitations of the MS-DOS environment that had come
with his toy and decided that he wanted an operating system for it that he could use more productively.
After exploring Minix, a feature-limited teaching operating system, he decided he needed a full-
featured OS.

At that time, no full-featured PC operating systems were freely available, so he decided to write his
own operating system. Today, that small hobby OS that Linus Torvalds started almost as a whim has
become Linux, a significant new variant of Unix that runs millions of the world's network servers and,
increasingly, desktop computers and embedded processors.

Linux has grown up, successfully making the transition from a one-man personal project to a
functional, full-featured operating system used by many of the world's major corporations and
deployed on millions of corporate and personal systems. Along the way, Linux has had to address
many of the same issues any new operating system must face. One of these concerns is how software
for Linux, and how the Linux operating system itself, should be installed. How can administrators
safely remove software packages without affecting other installed packages? And how can you safely
upgrade packages? Answering these questions is what this book is all about.

1. Installing, Removing, and Upgrading Applications
Applications for most operating systems consist of multiple files that must be copied to specific
locations on the computer's file system before each application can be run. This is true for common
PC operating systems such as MS-DOS or Microsoft Windows, as well as for Unix and Linux.

In the case of a Unix-like operating system such as Linux, other issues must also be considered.
Unix and Linux are multiple-user systems, so they must track ownership of files. Furthermore, Unix
and Linux use a system of file permissions. Administrators can grant some users access to files and
can control how users may access those files, for example, allowing some users the permission to
read only certain files. Administrators can deny other users access to the same files. So, installation
of an application on Linux requires consideration of all these details. After files are copied into their
appropriate locations, they must be granted correct permissions and correct ownerships.

Similarly, administrators occasionally need to remove installed software from the computer. Maybe
the program is no longer needed; maybe it does not work correctly for the needed task, or maybe the
space it is using is needed for more important programs. In addition, installed software sometimes
needs to be upgraded. Perhaps a new version of the software has come out and the currently
installed version needs to be replaced with the presumably improved version. In most respects,
software upgrades are the same as the removal of one application (the old version), followed by
installation of another application (the new version). Upgrades do, however, have additional issues.
Many applications must be configured before they can be used. Ideally, the upgrade for an installed

Introducing Package Management

xiv

application takes the current configuration into account, preserving old configuration information and
applying it to the recently installed version.

All these considerations make installation of a new application onto Unix or Linux a labor-intensive
process. To further complicate matters, Unix applications have primarily been distributed as source
code. To install a new application, such as the Apache Web server, you download the source code for
that application—in this case, from the Apache Project's Web page (http://httpd.apache.org). Typically,
the source code is provided in some sort of archive (such as the Zip archival and compression format
often used in the Windows world or the tar archive format typically used in the Unix world) that you
must then unpack. After unpacking this source code, you have to configure it to support the options
and systems you want, compiling it to produce an executable program that can run on your particular
operating system (CPU combination).

After compiling the source code, you still have to install the application by putting all of its components
(executable programs, documentation, configuration files, and so forth) into the correct locations on
your hard drive and setting correct permissions on all those files. You might also need to perform
other steps to prepare the system for the software. In the case of Apache, for example, some space
needs to be set aside for storage of Web-access logs, and a special user account needs to be created
so that the Apache Web server can operate more securely. Finally, you are ready to try running the
application you have spent so much time installing.

To help with all these tasks, precompiled software is becoming increasingly prevalent in the Unix
and Linux communities, so you might be able to find executable (precompiled binary) copies of the
application you wish to install that are appropriate for your particular machine's CPU. In that case,
download an archive of the compiled application and unpack it. Then skip the compilation step, since
that has already been done for you. The other steps required to install the package (copying files into
correct locations, setting file permissions, and doing any needed system or application configuration)
are exactly the same as the steps performed to install that application from source code. Once those
steps are finished, you are ready to test your freshly installed application.

When you run your newly installed application, you might be thrilled, perhaps discovering that it is
something you want to use regularly. On the other hand, you might discover that you have no use for
the software you have just installed, deciding that you want to uninstall it.

Uninstallation occurs by reversing the installation steps. Remember any special steps you have
performed (such as adding a user account), and undo those. Then remember all the files you have
installed and where you have installed them. Manually delete them. As you can see, this can become
a pretty tedious exercise.

If you like the application you have installed, you will likely find yourself wanting to upgrade it
eventually. The Apache Web server, for example, like any network service, must be upgraded
whenever security problems are found and fixed. If you find that you need to upgrade Apache, you
need to back up your Apache configuration files and then uninstall Apache. The next step is to install a
new version of Apache, applying your Apache-configuration customizations to your new installation of
Apache.

All of this is a big pain. There has to be a better way. And there is.

2. Overcoming the Installation Obstacles
None of the tasks you must perform to install, upgrade, or uninstall applications are especially
difficult. However, these steps quickly become daunting when you consider all the files that must be
managed. A full Red Hat Linux 7.3 installation provides around 3,000 executable commands and
over 160,000 total files (some other Linux distributions are even larger!). Obviously, managing all

http://httpd.apache.org

Application-level utilities

xv

these files by hand, although theoretically possible, is not technically feasible. On a smaller scale,
even management of single applications is not practical. The Postfix e-mail server application, for
example, consists of around 275 files scattered in a dozen or so different directories. Imagine trying to
remember and manually remove all of those files (and only those files) to uninstall Postfix from your
system!

All the steps needed to manage software on Unix or Linux systems are hardly unique to Unix; all
operating systems have similar procedures that must be followed to make software usable on
the system. For this reason, many approaches have been adopted toward software installation,
uninstallation, and upgrading.

2.1. Application-level utilities
Some operating systems, such as MS-DOS, have supplied absolutely no built-in tools for software
management. Installation of applications on such systems occurs in one of two ways: software is
installed manually, using file-copy utilities to put all the application files in the appropriate places on the
system, or software is installed using a custom-written installation application (as is usually the case
for MS-DOS applications).

Once installed, software can be uninstalled in one of two ways: you can manually delete each file
installed for the application (assuming you can even remember them all), or the application might
come with a custom uninstallation utility that can be run to remove the application. Upgrading an
already installed application on such a system uses a similar procedure. If the application comes
with an installation utility capable of handling application upgrades, you can use the utility to perform
the upgrade. Otherwise, the software must be manually upgraded using the procedure described
previously.

Current Windows Versions
Current versions of Windows, such as Windows XP, have a central database of installed
applications.

2.2. Built-in system utilities
Other operating systems have come with built-in utilities that a system administrator can use to
manage the system’s software. These utilities can be run to install the software on the system;
typically, they take some of the work out of manually installing software, dealing with issues such as
figuring out which files need to be put where on the system. Once installed, these utilities typically
track the files that have been installed. This knowledge can usually be used to uninstall those
applications automatically. Since the software knows which files are associated with the application,
it can be told to uninstall the application, and it can find and delete all the files that belong to that
application.

These built-in utilities typically come in two different forms. One type focuses on managing the
installation process, providing custom utilities that can be used to perform the otherwise manual
tasks of compiling software and copying files into their final locations. The three major freely available
Berkeley Unix, or BSD, operating systems, NetBSD, FreeBSD, and OpenBSD, for example, ship
with a software-management system called, variously, ports (FreeBSD and OpenBSD) or packages
(NetBSD).

The ports system is composed of extensions to the normal Unix software-compilation utilities that help
it automate and track many of the steps of a standard source-code compilation. When using ports, you

Introducing Package Management

xvi

still download source code, unarchive it, configure it, compile it, and install it, but the ports software
automates many of these steps. Furthermore, the ports system does limited tracking of the files it
installs. Although it does not offer more advanced features (such as an interface to search all installed
files to see what application supplied that file) or the ability to upgrade installed applications, it does
provide the ability to uninstall applications that are installed using ports. These sorts of limitations
are typical of management applications that function as the ports system does, by enhancing the
compilation and installation phases of application installation. The packages system on NetBSD has
similar limitations.

Other system-management utilities focus less attention on compiling an application for installation
and more attention on the files that must be installed on the system after the application has been
compiled.

For example, the standard System V Unix package-management software supplied with most
commercial Unix systems (Sun's Solaris, for example) devotes no attention to management of
software compilation at all. Instead, it tracks the individual files associated with each application in a
system database.

To install software using the System V tools, you must compile the software. After compiling the
software in the standard fashion, prepare a list of the files from that compilation that need to be
installed on the system. Be certain to state where the files need to be installed and what permissions
and ownerships they need to have once installed. Then run a series of commands that look at this
list, find the files listed in it, and archive them into one file, along with a copy of this list that specifies
where they should be installed and the ownerships and permissions. This single archive file can
then be transferred to other machines, where a System V software-management command can be
used to install it. This System V installation command (typically called pkgadd) unpacks the archive,
copies the files into their final destinations based on the enclosed listing, and sets permissions and
ownerships on the files as specified by the listing. Finally, this pkgadd command registers the list of
freshly installed files into a system-wide database of installed files.

Such a system offers several advantages over manual software installation. Software can now
be installed and uninstalled easily, and the system-wide database of installed files can be readily
searched to locate installed applications and files. However, this sort of system also has severe
limitations; it is far less flexible in the software-configuration stages than software such as the
FreeBSD ports system, which offers great control over the software-compilation stage of software
installation.

3. Linux Software Management Tools: Packages
Initially, Linux had neither type of software-management tool. In the early days of Linux, you installed
Linux by cross-compiling it under a different operating system (Minix), then manually installing the
compiled Linux programs into the appropriate locations to produce a working system. As Linux has
matured, however, it has acquired software-management tools that have made software installation,
removal, and upgrade significantly easier than in the early days. The exact software-management tool
used on modern Linux systems varies from distribution to distribution, but both approaches to system
management can be found in the tools used by various distributions.

The Gentoo Linux (http://www.gentoo.org/) distribution, for example, uses a software-management
system called Portage, which is very similar to the FreeBSD ports system. Like ports, Portage
provides great control over software compilation and installation, providing a collection of scripts that
automate much of the basic work of downloading and compiling software.

http://www.gentoo.org/

Linux Software Management Tools: Packages

xvii

At the other end of the spectrum, the now-defunct deepLinux distribution used a software-
management system called deep-package (still available from http://www2.cddc.vt.edu/linux/
distributions/deeplinux/tools). deep-package was intended to be a complete reimplementation of
the Solaris pkgadd utility and its helpers. Like the Solaris pkgadd software, deep-package paid no
attention to half of the question of how to manage software, focusing entirely on software installation
and tracking issues while entirely ignoring the initial compilation of the software.

More typically, however, Linux software-management tools use an approach somewhere between
the two extremes represented by Portage and deep-package. Most Linux software-management
tools provide software that manages the compilation of software, similarly to the FreeBSD ports
tools. However, these software-management tools typically produce packages from the software they
compile. Much like the archives produced by the System V software-management tools, packages are
simply archive files that contain two things: a collection of related files, which together have a common
use, and a script that provides all the metadata about those files necessary to install and manage
those files.

Typically, packages represent applications. For example, a Postfix package contains the 275 files that
make up Postfix and a script that specifies where on the system those 275 files need to be placed,
as well as what permissions and ownership those files need. A single command can then take this
Postfix package file, extract its 275 archived files, and use the script to place those files correctly on
the system.

In addition, most Linux software-management tools have a database component that tracks files and
applications that have been installed using the package-management software, helping the package
manager do its job of easing the management of installed software.

In the case of a full Red Hat Linux 7.3 installation, this package-management software maintains a
database of information regarding all 160,000 files on the system; as applications are installed on the
system, this database is updated with information regarding the new application and the locations of
its component files. This database is the key component, making it possible to manage the system.
Since this database remembers which 275 files compose the Postfix application, it ensures that I can
uninstall Postfix with a single command that accesses this database, without my having to remember
the locations of all 275 files that make up the Postfix application.

A wide variety of software-management tools are available for Linux to help lessen the work involved
with installing, removing, and upgrading applications installed on the system. This book focuses on
one of these tools, the RPM Package Management software, or RPM.

Change of Name
RPM was originally called Red Hat Package Manager. After adoption by other Linux
distributions, the name has changed to simply the RPM Package Manager. The RPM
initials remain the same.

As the original name implies, RPM was developed by &FORMAL-RHI;, the major Linux distributor in
the United States. Even though the original name seems to point to a Red Hat-only solution, most
Linux distributions use the RPM software. The RPM software provides a foundation needed by Linux
system administrators throughout the world. You can even use RPM on other operating systems, both
Linux and non-Linux, as covered in Chapter 18, Using RPM on Non-Red Hat Linuxes and Chapter 19,
RPM on Other Operating Systems, respectively.

http://www2.cddc.vt.edu/linux/distributions/deeplinux/tools
http://www2.cddc.vt.edu/linux/distributions/deeplinux/tools

Introducing Package Management

xviii

The RPM system provides all of the features needed to manage applications, including a database of
installed packages with their version numbers, the ability to install, remove, and update packages, and
the ability to recompile an application from a source code RPM package.

The remaining chapters in Part I go into depth on what you can do with RPM packages and the
commands you need to work with the RPM system:

1. Chapter 1, Introduction to RPM provides an overview of the RPM system, exploring what it was
designed for and where it has weaknesses.

2. Chapter 2, RPM Overview discusses the technical details of how the RPM system works, where
the database of packages gets stored, and what commands should be available for working with
RPM packages.

3. Chapter 3, Using RPM continues the discussion by covering the three major tasks you need to
perform with RPM packages: installing software, removing software, and upgrading software you
have already installed.

4. Chapter 4, Using the RPM Database covers the RPM database, how it works, where it resides,
and how you can use it to better manage your system.

5. Chapter 5, Package Dependencies delves into package dependencies, a very important concept.
Most major applications depend on a number of other packages. Sometimes these dependencies
get very complex, with one package depending on particular versions of other packages. With
thousands of packages on your system, this can lead to a big mess. This chapter helps you to sort
through the issues.

6. Chapter 6, Transactions covers the important issue of transactions, so that you can ensure your
system gets updated in an orderly manner and so that you can roll back changes if something
does not work out.

7. Chapter 7, RPM Management Software introduces a host of tools that can help you find RPM
packages as well as manage the packages on your system. This includes graphical interfaces on
top of the RPM system and special Internet search sites devoted just to RPM packages.

Later chapters cover creating RPM packages, programming with RPM, and extending the functionality
provided by the base RPM system.

4. Summary
Modern operating systems have large complex sets of applications, resulting in thousands of files to
keep track of for upgrades, installation, and removal of packages. All this complexity has lead Linux
vendors to develop a variety of package-management tools.

This chapter briefly introduced the RPM Package Manager, or RPM for short. The next chapter
provides an overview of the RPM system, showing how all the parts fit together.

Chapter 1.

1

Introduction to RPM
This chapter covers:

• Examining the history of package management

• Introducing RPM features

• Getting acquainted with RPM terminology

Several package managers are available for Linux to track and manipulate the applications installed
on the system. The most widely used of these Linux package managers is the RPM Package Manager
(formerly the Red Hat Package Manager), or RPM for short, the subject of this book

Although RPM was initially developed for Red Hat Linux, a combination of technical features and good
timing has resulted in RPM’s becoming the de facto standard for packaging software on most Linux
distributions. The fact that Red Hat released the source code to the RPM software under an open-
source license also helped its adoption.

More recently, the RPM package file format has been adopted as the official standard for Linux as part
of the Linux Standards Base, or LSB. Described at http://www.linuxbase.org/, the Linux Standards
Base is an attempt to set a baseline that all Linux distributions should follow. Some vendors have been
pulled in kicking and screaming, but the LSB for the most part has really helped the job of system
administrators by providing some commonality across distributions, as in the location of certain files.
The history of Linux package managers is largely intertwined with the history of Linux distributions.

Strictly speaking, Linux refers to a single piece of software, the Unix-like kernel that Linus Torvalds
and cohorts have scattered all over the Internet and have been developing since 1991. This Linux
kernel is a marvelous piece of software, currently comprising over 3.7 million lines of freely-licensed
source code and accompanying documentation. Together, these factors provide a fast, full-featured,
stable operating system kernel for use on more than 30 different processor architectures, ranging from
embedded systems such as watches and PDAs, to desktop and server systems, all the way up to
mainframes and supercomputing clusters.

1.1. The Need for Linux Package Management Systems
Although Linux is an excellent core component of an operating system suitable for a wide variety of
real-world applications, this Linux kernel by itself is not sufficient for accomplishing most tasks. The
technical definition of exactly what constitutes an operating system is a matter of debate.

Despite this controversy, it is clear that most users of Linux require both the Linux kernel and a large
suite of accompanying software (a shared C library; traditional Unix utilities such as grep, awk, and
sed; an editor, such as vi; a shell, such as the Bourne-Again bash shell; and so forth) to complete
the various tasks for which they typically employ Linux.

Users expect Linux to include server software such as the Apache Web server, desktop software such
as the OpenOffice.org office productivity suite, and a host of other packages. In fact, most Linux users
don’t make the distinction between the kernel (technically the only part that is Linux) and all the extra
packages (technically “everything else”) that comes with a Linux distribution. Most users simply refer
to the whole thing as “Linux.”

Some Linux distributions include thousands of packages on six or more CD-ROMs. This situation
alone cries out for effective package-management software. And this doesn’t include the extra

http://www.linuxbase.org/

Chapter 1. Introduction to RPM

2

packages that don’t come with Linux distributions but which organizations need to create an effective
working environment.

Furthermore, the Linux kernel and these various software applications are typically made available by
their developers in source code formats only, and they can be installed manually only after compiling
them from source code.

Most people do not have the technical skills necessary to cross-compile an entire operating system.
Even if they do, they usually do not want to devote the time and effort required to bootstrap and
compile an operating system just to be able to run Linux.

Fortunately, the early Linux programmers quickly realized the impracticality of source-code only
releases early in Linux's development and created what they called distributions—collections of
precompiled binaries of the Linux kernel and other necessary software that users often wanted. Rather
than installing Minix, compiling the Linux kernel and other required software applications under Minix,
and installing those compiled binaries of the Linux kernel and essential Linux applications, users could
just install these distributions, immediately having a functional Linux environment in which to work.

Early distributions, such as MCC and SLS, initially represented little more than archived snapshots
of their developer's hard drive. They offered the user performing the installation little or no control
over what applications were put on the system. Whatever the distribution developer had on his hard
drive was what the distribution installer got on her hard drive. Even this was much better than rolling
your own distribution by hand. SLS, for example, stood for Soft Landing System, and was designed to
make the experience of installing Linux easier, hence providing a “soft landing.” MCC Interim Linux,
from the Manchester Computing Centre, was the first distribution to sport a combined boot/root disk,
another attempt to make life easier for those adopting Linux.

Distribution developers quickly realized, however, that more flexibility was needed and began looking
for ways to provide choices both during and after installation. The Slackware distribution, for example,
divided applications into several functional categories. All users installed the base distribution; users
could then selectively install only the additional supplemental categories they needed. If networking
support was desired, for example, the networking bundle could be installed. Similarly, if a graphical
user interface was desired, the X bundle could be installed, making the X Window System available.
This concept offered rudimentary control over what was installed but only at a very coarse level.
Installing the X bundle put several applications (multiple X terminal emulators, several different
window managers, and so forth) on the system, and all users who installed the bundle got all of those
applications whether they wanted them all or not.

The next logical step in distribution evolution was the development of more advanced tools to control
what was installed. Several distributions independently developed the notion of application-level
installation management. The developers of these distributions realized that Slackware and similar
distributions were heading in the right direction, but simply had not made software management
granular enough. Slackware allowed installation and uninstallation (after a fashion) of bundles of
related applications, but what was really needed was installation and uninstallation on an application-
by-application basis.

In late 1993, Rik Faith, Doug Hoffman, and Kevin Martin began releasing the first public betas of the
BOGUS Linux distribution. BOGUS was notable for the package management system (pms) software
that was used with it for installation and uninstallation of all software on an application-by-application
basis. Shortly thereafter, in the summer of 1994, the first public betas of Red Hat Commercial Linux
were released. Red Hat initially used Red Hat Software Program Packages (RPP) as the basis of its
Linux distribution. Like pms, RPP was a system-management tool that allowed for easy installation and
uninstallation of applications. In late 1993, Ian Murdock founded the Debian Gnu/Linux distribution. He

RPM Design Goals

3

began seriously developing its dpkg application-management software by the summer of 1994. Like
pms and RPP, dpkg made it possible to manage each application on the system.

1.2. RPM Design Goals
All of these early system-management tools took a similar approach. They provided the capability
to install an entire application with a single command, to track the files it put on the system, and to
remove those files by using another single command. As the preponderance of multiple early tools
suggests, this approach to system management was popular. All of these early tools, however, had
numerous technical or practical deficiencies. Some tools were designed only for Linux on 32-bit Intel-
compatible hardware, even though Linux by this point was already running on other CPUs in addition
to the IA32 family. As Linux was spreading to multiple architectures, a package-management system
that could produce packages for multiple architectures was needed. Other tools had technical flaws in
how they prepared packages, making it difficult to verify that packages had been prepared correctly or
to see exactly how the software was prepared.

Because of these concerns, after their initial releases of RPP-based distributions, Red Hat looked
closely at both their own RPP software and other software such as BOGUS's pms software.
Developers at Red Hat, particularly Marc Ewing and Erik Troan, set out to develop what they initially
called the Red Hat Package Manager (RPM). Based on experiences with earlier Linux packaging
software and knowledge about packaging tools used on other platforms, Red Hat had several design
goals in mind when they developed RPM. These design points include the following features:

• Ease of use

• Package-oriented focus

• Upgradability of packages

• Tracking of package interdependencies

• Query capabilities

• Verification

• Support for multiple architectures

• Use of pristine sources

The following sections demonstrate how Red Hat incorporated each of these design goals into RPM.

1.2.1. Ease of use
Perhaps the primary design goal for RPM is that it must be easy to use. Manual software installation
has been the primary method of putting software onto Unix boxes for over 30 years now and has
worked very well for those three decades. To offer a compelling reason to use the new software,
RPM must be significantly easier to use than other Linux package-management tools. For that
reason, most tasks that can be handled using RPM were designed to be carried out via a single
command. For example, software installation using RPM requires a single command (rpm -U
software_package), while manual software installation using older manual methods typically
requires at least six steps to complete the same task:

1. tar zxf software_package

Chapter 1. Introduction to RPM

4

2. cd software_package

3. ./configure

4. make

5. su

6. make install

Similarly, removal of applications installed using RPM requires a single command (rpm -e
software_package); manual removal of an installed application requires that each file associated
with that application be manually deleted.

1.2.2. Package-oriented focus
Like its predecessors, RPM is intended to operate on a package level. Rather than operating on a
single-file basis (as when you manually install software using Unix command-line tools like mv and cp)
or on an entire system basis (as with many PC operating systems, which provide the ability to upgrade
entire releases but not to upgrade individual components), RPM provides software that can manage
hundreds or thousands of packages.

Each package is a discrete bundle of related files and associated documentation and configuration
information; typically, each package is a separate application. By focusing on the package as the
managed unit, RPM makes installation and deletion of applications extremely straightforward.

1.2.3. Package upgradability
In addition to its package-oriented focus, RPM is designed to support upgrading packages. Once an
application has been installed from an RPM package, a newer version of the same application can be
installed using RPM. Doing so upgrades the existing application, removing its old files and replacing
them with new files. In addition, however, RPM takes care to preserve any customizations that have
been made to that application. The Apache Web server application, for example, is commonly installed
on Linux machines that need the ability to serve Web pages.

Apache's configuration information, which specifies things such as which files on the system should
be made available as Web pages and who should be able to access those Web pages, is stored in a
text file, typically /etc/httpd/conf/httpd.conf. Suppose Apache has been installed using RPM
and that you have then customized httpd.conf to specify its configuration. If you upgrade Apache
using RPM, as part of the upgrade procedure, the RPM application will take precautions to preserve
the customizations you have made to the Apache configuration. In contrast, manual upgrades of
applications often overwrite any existing configuration files, losing all site customizations the system
administrator has made.

1.2.4. Package interdependencies
Software that manages the applications installed on the system on an application level (such as
RPM) does have one potential drawback in comparison with system-wide software management
systems (such as PC operating systems like Microsoft Windows or OS/2, which allow the entire
system to be upgraded but do not generally allow individual components to be upgraded, added, or
removed). Software applications often have interdependencies; some applications work only when
other applications are installed.

Query capabilities

5

The Postfix and Sendmail mail transfer agent (MTA) applications that are commonly used on
Linux boxes to serve e-mail, for example, can both be configured to require users to authenticate
themselves (by submitting a correct user name and password) successfully before they can use the e-
mail server. This feature is often used to prevent unauthorized access to the e-mail server, preventing
unscrupulous advertisers from using the server as a tool to send unsolicited commercial e-mail (or
UCE, popularly known as spam). For this optional feature of Postfix and Sendmail to work, however,
additional software must be installed. Both applications use another application, Cyrus SASL, which
provides the Simple Authentication and Security Layer (SASL) software that Postfix or Sendmail can
use to check user names and passwords. In other words, Postfix and Sendmail depend on Cyrus
SASL.

For system-wide software management systems, logical interdependencies between system
components such as these are easy to track. All required components are included as part of
the system, and upgrading the system upgrades all these components, ensuring that all can still
interoperate. On Microsoft Windows 2000, IIS (the application used on Windows to serve Web pages)
requires several other applications such as EventLog (the Windows application that records system
events, much like the Linux syslogd and klogd software) to be present. Since Windows is managed
on a system level, not a package level, this dependency is guaranteed to be satisfied. On Linux
systems using RPM, however, the situation is different. On Linux, for example, the Postfix application
requires the syslogd application, which records system events. However, RPM provides the flexibility
to install some applications but not install others or to uninstall others later. When you install Postfix,
you have no guarantee that syslogd is already installed. If syslogd is not installed, Postfix will not
work correctly.

To avoid problems, Red Hat developers realized that RPMs must also track dependency information
about what software they require for correct functionality, and that the RPM install and uninstall
applications must use this dependency information. Because of dependencies, installing Postfix
using RPM on a system without syslogd installed generates a warning that syslogd must also be
installed. Similarly, attempting to uninstall syslogd from a system that already has Postfix installed
generates a warning that installed applications require the software that is being deleted. These
warnings can be overridden if necessary, but by default RPM enforces these dependencies (refusing,
for example, to let you uninstall syslogd without also uninstalling applications that require it, such
as Postfix), preventing you from accidentally breaking applications by inadvertently uninstalling other
software that they require to operate.

1.2.5. Query capabilities
As part of its implementation, the RPM software maintains a database on the system of all packages
that have been installed, and documenting which files those packages have installed on the system.
RPM is designed to be queried easily, making it possible for you to search this database to determine
what applications have been installed on the system and to see which packages have supplied each
file on the system. This feature makes RPM-based systems extremely easy to use, since a single
RPM command can be used to view all installed applications on the system.

1.2.6. Package verification
RPM also maintains a variety of information about each installed file in this system database, such
as what permissions each file should have and what size each file should be. Red Hat developers
designed this database to be useful for software verification. Over time, installed software will fail to
work for reasons as mundane as the system administrator setting incorrect permissions on files or as
exotic as nuclear decay of one of the computer's atoms releasing an alpha particle that can affect the
computer's memory, corrupting that bit of memory and causing errors. Although RPM cannot prevent

Chapter 1. Introduction to RPM

6

all errors that cause installed software to fail (obviously, there's not a single thing any software can
do to prevent nuclear decay), it can be used to eliminate common errors. When an application fails,
you can use the RPM database to make sure that all files associated with that application still have
correct Unix file permissions and that no files associated with that application have become altered or
corrupted.

1.2.7. Multiple architectures
Most of the RPM design goals mentioned so far are intended primarily to ease the life of system
administrators and others who regularly install, remove, and upgrade applications or who need to
see what is installed or verify that installed applications have been installed correctly. Some of the
design goals for RPM are intended primarily not for those sorts of users of RPM but for users who
must prepare software to be installed using RPM.

One of the major limitations of early Linux package management utilities was that they could produce
packages suitable only for installation on one type of computer: those that used 32-bit Intel-compatible
CPUs. By 1994, Linux was beginning to support other CPUs in addition to the originally supported Intel
CPUs. (Initially, Digital's Alpha processor and Motorola's 68000 series of processors were among the
first additional CPUs that Linux supported. These days, Linux supports dozens of CPU architectures.)
This posed a problem for distribution developers such as Red Hat and Debian, and for application
vendors who desired to package their software for use on Linux. Because the available packaging
methods could not produce packages for multiple architectures, packagers making software for
multiple CPUs had to do extra work to prepare their packages.

Furthermore, once the packagers had prepared packages, no method was available to indicate the
architecture the packages targeted, making it difficult for end users to know on which machine types
they could install the packages.

Red Hat decided to overcome these limitations by incorporating architecture support into RPM, adding
features so that the basic setup a packager performs to create a package could be leveraged to
produce packages that would run on various CPUs, and so that end users could look at a package
and immediately identify for which types of systems it was intended.

1.2.8. Pristine sources
The BOGUS distribution's pms packaging system introduced the use of pristine source code to
prepare packages. With Red Hat's early RPP package system and other similar early efforts, software
packagers would compile software manually, then run commands to produce a package of that
compiled software. Any changes made to the application's original source code were not recorded
and would have to be recreated by the next person to package that software. Furthermore, end users
wanting to know what changes had been made to the software they were running had no method of
accessing that information.

With RPM, Red Hat developed a package system that produced two types of packages: binary and
source. Binary packages are compiled software that can be installed and used. Source packages
contain the source code for that software, along with a file documenting how that source code must be
compiled to produce that binary package. This feature is probably the single most significant difference
between modern Linux packaging software (such as RPM) and the packaging software used on other
systems (such as the pkg format that commercial Unix systems use). Source packaging makes the
job of software packager easier, since packagers can use old source packages as a reference when
preparing new versions of those packages. Source packages are also convenient for the end user,
because they make it easily possible to change options with which that software was compiled and to
produce a new binary package that supports the features the user needs.

RPM Terminology

7

1.3. RPM Terminology
When working with RPM, understanding the package concept is key. RPM packages are provided as
compressed archive files that contain one or more files, as well as instructions specifying installation
information about those files, including the ownerships and permissions that should be applied to
each file during installation. The instructions can also contain scripts to be run after installation or
before uninstallation. These package files are extremely convenient; they provide a single file that can
be easily transferred between machines for installation rather than having to transfer each file to be
installed.

To help in installation and management, all package files are labeled with highly identifiable names.
Package files have four-part names, which typically look something like:

• kernel-smp-2.4.18-3.athlon.rpm

• kernel-smp-2.4.18-3.i586.rpm

• kernel-smp-2.4.18-3.i686.rpm

• kernel-source-2.4.18-3.i386.rpm

• rootfiles-7.2-1.noarch.rpm

Here, the four parts of each name are separated from each other by dashes or periods. The structure
of the package file name is

name-version-release.architecture.rpm

The name identifies what software is contained within the archive file. Typically, this is a name of
an application or package that the archive installs on the system. For example, kernel-smp can
be installed to provide a very important application, the SMP (symmetric multiprocessing, meaning
it supports systems with more than one CPU in them) version of the Linux kernel, on the system.
Sometimes, rather than an application, the software is a collection of other files needed on the system.
The rootfiles package, for example, is not an application but is a collection of basic environmental
configuration files for the root user's account (such as /root/.bashrc, the root user's Bash
configuration file) that provides a usable, preconfigured working environment for the root user.

The second field in every package file's name is the version field. This field identifies the
version number of the software that is contained in the package file. For example, kernel-
smp-2.4.18 indicates the RPM holds the 2.4.18 release of the SMP version of the Linux kernel, and
rootfiles-7.2 is the 7.2 release of the rootfiles configuration files.

Every package file name also has a third component: the release field. This field identifies which
release of that version of the software the package file contains. Package files contain both software
and instructions about how to install that software. As packages of a particular version of software
are being prepared, mistakes are sometimes made in these instruction files, or bugs are sometimes
fixed within a software version; more recent package files of that software version need to be prepared
that correct the problem. The –1 in the rootfiles-7.2-1 package shows this is the first release of
the 7.2 version of the rootfiles software. The packager of rootfiles version 7.2 got everything
right on the first try and had no need to prepare more than one release. The –3 in the kernel-
smp-2.4.18-3 package, on the other hand, is the third release of the 2.4.18 version of the SMP-
capable Linux kernel. This release incorporates new patches to fix bugs present in older releases of
the 2.4.18 version of the Linux SMP kernel. The software packager increased the release number so
that end users could distinguish the more recent, bug-fixed package file from the older, less bug-free
package file.

Chapter 1. Introduction to RPM

8

The final field in package file names is the architecture, which identifies the system types for which
the package file is appropriate. For example, the kernel-smp-2.4.18-3.athlon package is
intended for use on machines with an AMD Athlon CPU, and kernel-smp-2.4.18-3.i586 is
intended for use on machines with an i586 (Pentium-class) CPU or better. An architecture name
of noarch indicates this is a special architecture such that the files in the package work on any
architecture. Typically, this is because the files are all interpreted scripts, not binary executables, or
are documentation.

RPM supports various architectures. Table 2-1 presents the architectures available for different
platforms as of RPM version 4.1.

Table 2-1 Supported Architectures

Platform Architectures

Intel compatible 32-bit i386, i486, i586, i686, athlon

Intel compatible 64-bit ia64

HPAlpha (formerly Digital, Compaq) alpha, alphaev5, alphaev56, alphapca56,
alphaev6, alphaev67

Sparc/Ultra Sparc (Sun) sparc, sparcv9, sparc64

ARM armv3l, armv4b, armv4l

MIPS mips, mipsel

Power PC ppc, ppciseries, ppcpseries, ppc64

Motorola 68000 series m68k, m68kmint

SGI MIPS Sgi

IBM RS6000 rs6000

IBM S/390 i370, s390x, s390

Platform independent noarch

Architecture Compatibility
When choosing an appropriate architecture for your machine, be aware that more recent
architectures typically run software that targets older architectures within the same
family; the reverse, however, is not true. For example, within the 32-bit Intel-compatible
architectures, a 686-class (Pentium II / III / IV) machine runs files within i386, i486, i586,
and i686 RPM package files, but a 386-class (80386) machine runs files within i386
RPM package files only. Similarly, for the Alpha architecture, more recent Alpha EV68
CPUs can run programs from RPM package files with alphaev67, alphaev6, alphaev56,
alphaev5, and alpha architectures, but an older Alpha EV56 machine can run programs
from RPM package files with alpha, alphaev5, or alphaev56 architectures only.

Notice that the four fields in RPM package file names are separated from each other by punctuation,
either a dash (-) or a period (.). Periods and dashes, however, are also allowed within fields. 7.2 is a
valid version number, just as kernel-source is a valid software name. Finally, keep in mind that all
RPM package files use an .rpm file-name extension to denote that they are RPMs.

Once installed, package names are slightly different from package file names. Package files,
which can be downloaded from the Internet, copied off of CDs, and otherwise easily transferred
between machines, always have names that looks like name-version-release.architecture.rpm.

Summary

9

Installed packages, however, have names that look like name-version-release. Once installed,
packages are referred to without the architecture field and the .rpm extension. Furthermore, installed
packages consist of lots of files, not a single RPM file. For example, the package file kernel-
smp-2.4.18-3.i686.rpm after installation is referred to as kernel-smp-2.4.18-3. To simplify
usage even further, installed packages can be referred to by their name field only, so this file would
become simply kernel-smp.

Software Names May Differ from Package Names
Once installed, the name of the package does not have to be the same as the name
portion of the original package file. By convention though, the package name matches the
name, version, and release part of the file name.

Usage of the name field by itself to name packages assumes that multiple versions or releases of that
particular software are not installed. However, it is in some cases necessary to install different versions
or releases of the same package. My desktop at home is a (by now, relatively old) dual Pentium-
II system, so it uses an SMP-capable Linux kernel. On it, I have the following Linux SMP kernels
installed:

• kernel-smp-2.4.18-4

• kernel-smp-2.4.18-3

• kernel-smp-2.5.21-4

This example uses the rpm –q command to query for all installed versions of the given package,
kernel-smp.

The RPM Database
Chapter 4, Using the RPM Database covers querying the RPM database in depth.

I have two different package file releases (release 3 and release 4) of the 2.4.18 version of the Linux
kernel, and I have a development kernel, version 2.5.21, installed. On this system, since I have
multiple packages installed of the kernel-smp software, I have to use the full package name (such
as kernel-smp-2.4.18-4) whenever I want to work with my installed kernel-smp packages.

1.4. Summary
The RPM system wasn’t created to solve some theoretical problem. Instead, it is the result of years
of hard-won practical experience in trying to manage systems with a large number of applications.
RPM builds upon older systems that were created to solve some of the problems faced by system
administrators. RPM goes further, though, and tries to provide a complete package-management
solution. This includes the ability to deal with wrinkles that Linux faces but that many other operating
systems do not need to address.

For example, most other operating systems don’t support more than one or two processor
architectures. Sun’s Solaris, for example, supports only the SPARC and Intel architectures.
Linux supports these and more. Most other operating systems also don’t include nearly so many
applications. From the OpenOffice.org office suite to the Apache Web server, Linux distributions are

Chapter 1. Introduction to RPM

10

literally packed with applications. As a final point, most other operating systems provide mainly closed-
source applications. Linux, on the other hand, includes thousands of open-source applications.

From the perspective of the organizations making Linux distributions, these wrinkles make Linux
harder to manage. Luckily for end users, the solution to these problems helps make the RPM system
better able to manage user systems:

1. Supports Multiple Architectures — The RPM system tags each package with the processor
architecture.

2. Permits Multiple Software Versions in Parallel — RPM allows for multiple versions of the same
package to be installed on the same system.

3. One File Per Program — RPM packs all of the files in a package into one file, called an RPM file,
for easy transfer to other systems.

4. Requires Only One Command Per Action — Most RPM operations such as installing or removing
packages require only a single command to run.

5. Uses Pristine Sourcecode — The RPM system supports building RPM packages from a pristine
set of sources. This means you can reproduce the commands required to build an application,
improving quality.

This chapter introduced the RPM system and the history behind it. The next chapter delves into the
RPM basics, including files, database, and commands.

Chapter 2.

11

RPM Overview
This chapter covers:

• Understanding the package file

• Querying the RPM database

• Running RPM commands

Working with RPM packages, files, commands, and databases can be complicated. There are
thousands of files, for hundreds if not thousands of packages, installed on your system. You need
some way to manage it all. The RPM system can help you do that.

This chapter provides an overview of the components that make up the RPM system for package
management: package files, databases, and RPM commands.

2.1. Understanding the Package File
RPM provides for installing, upgrading and removing packages. Typically, each package is an
application and all the necessary files associated with that application. For example, the Apache Web
server comes with a number of configuration files, a large set of documentation files, and the Apache
server itself. All of this fits into one RPM package.

One of the main advantages of the RPM system is that each .rpm file holds a complete package. For
example, the following file holds the xcopilot package:

xcopilot-0.6.6-3.i386.rpm

Based on the naming conventions discussed in Chapter 1, Introduction to RPM, this package
represents xcopilot package, version 0.6.6, third build of an RPM package, for i386 (Intel)
architecture systems.

With a single command, you can copy an .rpm file to another Linux system and install it, getting the
complete contents of the package, or you can use other commands to remove or update the package.

2.1.1. RPM file format
RPM files hold a number of tagged data items and a payload, the files to install on your system. The
tagged data items describe the package and can contain optional features. For example, the NAME
tag holds the package name. The optional PRE tag holds a pre-installation script, a script that the rpm
command runs prior to installing the files in the package payload.

Under the covers, RPM package files contain four sections. The first is a leading identification area
that marks the file as an RPM package (created with a particular version of the RPM system). The
remaining sections are the signature, the tagged data (called the header), and the payload. Each of
these sections has important information about the package, although the payload section contains
the actual content of the package.

Signature
The signature appears after the lead or identifier section, which marks the file as an RPM file. Like
your signature when you sign a check, the RPM signature helps verify the integrity of the package.

Chapter 2. RPM Overview

12

No, the signature doesn’t check for bugs in software applications. Instead, it ensures that you have
downloaded a valid RPM archive.

The signature works by performing a mathematical function on the header and archive sections
of the file. The mathematical function can be an encryption process, such as PGP (Pretty Good
Privacy), or a message digest in MD5 format.

Header
The header contains zero or more tagged blocks of data that pertain to the package. The header
contains information such as copyright messages, version numbers, and package summaries.

Payload
The payload section contains the actual files used in the package. These files are installed when
you install the package. To save space, data in the archive section is compressed in GNU gzip
format.

Once uncompressed, the data is in cpio format, which is how the rpm2cpio command (introduced in
the "Other RPM commands" section later in this chapter) can do its work.

2.1.2. Binary RPMs and Source RPMs
There are two main types of RPM packages: binary (or applications) and source. A binary RPM has
been compiled for a particular architecture. For example, the Apache Web server compiled for an Intel
Pentium, or i586, architecture won’t work on a Sharp Zaurus, which runs an Intel ARM processor. To
run on both systems, you would need two separate packages: one for the Pentium i586 and one for
the ARM.

In addition to binary RPMs, you can get source code RPMs. These RPMs are packages that provide
the source code for other packages. Sounds kind of circular, doesn’t it?

2.1.2.1. binary RPMs
Binary RPMs hold complete applications or libraries of functions compiled for a particular architecture.
Most binary RPMs contain complete applications, such as the Apache Web server or the AbiWord
word processor. These application binary RPMs usually depend on a number of system libraries which
are, in turn, also provided by binary RPMs.

Finding More Software
Chapter 7, RPM Management Software covers a number of locations where you can
find RPM applications galore. Your Linux installation CDs are also a great source for
applications. Most Linux distributions come with more applications than you can imagine
using.

Although most binary RPMs are complete applications, others provide libraries. For example, the
Simple DirectMedia Layer library (SDL), which provides really cool graphics for many games, can
be packaged as an RPM file. A number of programs, mostly games, use this library for enhanced
multimedia such as rich graphics. RPMs that provide libraries allow multiple applications to share the
same library. Typically, the libraries are packaged into separate RPMs from the applications.

In addition to binary RPMs that hold applications or libraries compiled for a particular architecture,
RPM supports the concept of platform-independent binary RPMs. These platform-independent
RPMs, called noarch as a shorted form of “no architecture” dependencies, provide applications or

Source RPMs

13

libraries that are not dependent on any platform. Applications written in Perl, Python, or other scripting
languages often do not depend on code compiled for a particular architecture. In addition, compiled
Java applications are usually free of platform dependencies.

2.1.3. Source RPMs
The xcopilot package, mentioned previously, contains the xcopilot application used for
synchronization with Palm handheld devices. The source code used to create this application is stored
in an xcopilot source RPM, for example:

xcopilot-0.6.6-3.src.rpm

By convention, source RPMs have a file name ending in .src.rpm.

Source RPMs should contain all the commands, usually in scripts, necessary to recreate the binary
RPM. Having a source RPM means that you can recreate the binary RPM at any time. This is a very
important goal of the RPM system.

Source RPMs and Open Source Licencing
Source RPMs have nothing to do with open-source software licenses. Linux is famous for
being an open-source operating system. In RPM terms, that means the source code for
the Linux kernel and most Linux applications are freely available as source RPMs. But
you can also make source RPMs for proprietary programs. The key issue is that you are
unlikely to distribute the source RPMs for proprietary packages.

Furthermore, a number of open-source applications are not available as source RPMs.
That's a shame, since source RPMs would make these applications easier to install.

While source RPMs hold the commands necessary to create the binary RPM, there may be
differences in your Linux environment that would result in rebuilding a binary RPM that is different from
the original binary RPM. For example, the compile scripts for some packages may add in optional
code depending on which libraries or which versions of libraries are found on your system. Chapter 13,
Packaging Guidelines covers many issues in creating RPMs, and Chapter 18, Using RPM on Non-Red
Hat Linuxes and Chapter 19, RPM on Other Operating Systems cover issues related to other versions
of Linux and other operating systems, respectively. If you follow the guidelines when making your own
RPMs, you should result in source RPMs that reproduce binary RPMs as consistently as possible.

2.2. Querying the RPM Database
The RPM database holds information about all the RPM packages installed on your system. You
can use this database to query what is installed, to help determine if you have the latest versions of
software, and to verify that your system is properly set up, at least from a packaging point of view.

The RPM database itself is stored in the directory /var/lib/rpm/, and should contain files like the
following:

• Basenames

• Conflictname

• __db.001

• __db.002

Chapter 2. RPM Overview

14

• __db.003

• Dirnames

• Filemd5s

• Group

• Installtid

• Name

• Packages

• Providename

• Provideversion

• Pubkeys

• Requirename

• Requireversion

• Sha1header

• Sigmd5

• Triggername

The RPM Database
Chapter 4, Using the RPM Database covers the database in more detail.

These files make up the RPM database. The file __db.001 and similar files are lock files used by
the RPM system. The other files are databases in Berkeley DB format. The most important file is
Packages. The Packages file contains the header tag information for each package indexed by an
index number for each package. This number slowly grows with time.

The other files, such as Name, Providename, and Group, exist to speed access to particular types
of information. Treat your RPM database with care. Back up the files, especially after upgrading,
installing, or removing packages.

Recreating The RPM Database
Only the Packages file is essential. You can recreate the rest of the files using the rpm
--rebuilddb command, introduced in Chapter 4, Using the RPM Database.

2.3. Running RPM Commands
The primary RPM command is simply rpm. One of the original goals of the RPM system is providing
ease of use. In support of this goal, just about everything you want to do with the RPM system can be

Working with the rpm command

15

done with this one command. For most usage, the command-line parameters to the rpm command
determine the actions it should take.

2.3.1. Working with the rpm command
The rpm command performs the most common package-management functions, along with a host of
uncommon functions as well. The table below lists the main operations you can perform with the rpm
command and the command-line options to specify the given operations.

Operation Short Option Long Option

Upgrade/install -U --upgrade

Install -I --install

Remove -e --erase

Query -q --query

Verify -V --verify

Check signature -K --checksig

Freshen (upgrade) already-
installed package

-F --freshen

Initialize database None --initdb

Rebuild database None --rebuilddb

Table 2.1. The main rpm operations

Using this table as a guide, you can explore the options to the rpm command. To install or upgrade a
package, use the -U command-line option:

rpm -U filename.rpm

For example, to install the xcopilot RPM used as an example in this chapter, run the following
command:

rpm -U xcopilot-0.6.6-3.i386.rpm

To get extra feedback, you can use a command like the following, with the -h and -v options in
conjunction with the –U option:

rpm -Uhv xcopilot-0.6.6-3.i386.rpm

When you run this command you will see more output than the default, which is no output unless
there are errors. With the –h option, the rpm command will print a series of hash marks, #, to provide
feedback that the command is still running. With the –v option, the rpm command provides more
verbose messages.

Installing a Package
The most common command to install a package is:

Chapter 2. RPM Overview

16

rpm -Uhv package_file.rpm

This command upgrades a package with extra output. If the package has not been
installed, this command installs the package. See Chapter 3, Using RPM for more on
upgrading and installing.

To remove a package (called erase in RPM terminology), use the –e command-line option:

rpm –e package_name

Using File Extensions
Notice that you install a package file using the file name that ends in .rpm, but uninstall
or erase a package without the .rpm extension. This is because you install RPM files, but
once installed, you work with the installed packages. The file name and the package name
do not have to correspond, but typically (and sanely) they have the same base name.

To list every RPM package installed on your system, use a command like the following.

rpm –qa

Expect to wait while this command completes. Most Linux systems have numerous packages
installed, which will result in many lines of output. To better see the output, you can pipe this command
to the more command, as shown following:

rpm –qa | more

You will then see the package listing one screen at a time.

rpm Options
Chapter 21, RPM Command Reference lists all the options for the rpm command.

2.3.2. Other RPM commands
In addition to rpm, the RPM system includes a few more commands, including rpmbuild and
rpm2cpio.

The rpmbuild command helps build RPM packages. I describe its usage in depth in Part II of this
book.

The rpm2cpio command exports an RPM package file int the format that the cpio command
expects. The cpio command works with many tape-backup packages. You can also take advantage

Summary

17

of the fact that cpio can list the individual files in a cpio archive or extract files. To list the files in an
RPM package, use a command like the following:

rpm2cpio package_file.rpm | cpio –t

For example, the following command lists all the files in the xcopilot package:

rpm2cpio xcopilot-0.6.6-3.i386.rpm | cpio –t

To display:

 ./etc/X11/applink/Applications/xcopilot.desktop ./usr/bin/xcopilot ./usr/doc/
xcopilot-0.6.6 ./usr/doc/xcopilot-0.6.6/README ./usr/include/X11/pixmaps/xcopilot.xpm ./usr/
include/X11/pixmaps/xcopilot2.xpm 3120 blocks

The rpm2cpio command can also help if you want to extract a single file from the RPM package,
using the cpio –ivd command-line options, as follows:

 rpm2cpio xcopilot-0.6.6-3.i386.rpm | cpio –ivd usr/doc/xcopilot-0.6.6/README

This command will output local usr/doc/xcopilot-0.6.6/ subdirectories and the README file
located under usr/doc/xcopilot-0.6.6/.

The –i option tells cpio to extract files. The –d option tells cpio to make any local subdirectories
as needed (usr/doc/xcopilot-0.6.6/, in this example), and the –v option asks cpio to politely
output verbose messages about what it does. Of course, verbose is in the eye of the beholder; with
many Unix and Linux commands, verbose output is still somewhat terse.

2.4. Summary
The RPM files, the RPM database, and the RPM commands are the primary components that make
up the RPM system. This chapter introduces you to the format and types of RPM files, the importance
of maintaining the database, and the basic rpm command.

The next chapter covers the most frequently used RPM commands. These commands allow you to
install, uninstall, and update RPM packages.

18

Chapter 3.

19

Using RPM
This chapter covers:

• Installing and upgrading software

• Removing software

This chapter covers the most common uses for RPM: installing, removing, and upgrading software.
These are the most frequently used RPM commands.

The RPM system includes the options you might expect, such as installing a package, but there’s
a lot more you can do. For example, you can install packages from remote sites using HTTP or
FTP to download the package to install. There are quite a few other rpm options you can use to get
information and feedback on installation, for example.

3.1. The rpm Command
Just about everything you do with RPM requires the rpm command. As a nice added benefit, just
about everything you do with RPM requires a single invocation of the rpm command. That means
common tasks such as installing and removing software can be done quickly and efficiently. The
basics of the rpm command are not very hard, and you can perform the basic tasks within a few
minutes of reading this chapter.

3.2. Upgrading and Installing Software
To install software, you need something to install. Typically, this is a file packaged as RPM, using a
file-name extension of rpm. Of course, this isn’t required, but just about every RPM package is stored
in a file with a rpm extension. For example, the following file holds an RPM package, ready to be
installed:

jikes-1.16-1.i386.rpm

This package holds an application named jikes (a Java language compiler application). From the
discussion in the last two chapters, you should be able to determine the version of the program this
RPM holds and which release of the RPM package this represents.

Other RPMs hold sources, the program source codes used to create an application or programming
library. For example, the following file holds a source RPM:

jikes-1.16-1.src.rpm

The src in the package name is short for source. This file-naming convention is not required, but is
used by just about all source code packages. (Following conventions helps other administrators know
what to expect.)

Building Packages from Source RPMs
Refer to Chapter 8, Creating RPMs: An Overview and Chapter 11, Controlling the Build
with rpmbuild for information on building RPMs from source RPMs.

The rpm command provides three main operations for upgrading and installing packages:

Chapter 3. Using RPM

20

Upgrade
An upgrade operation means installing a new version of a package and removing all previous
versions of the same package. If you have not installed a package previously, the upgrade
operation will install the package.

Freshen
A freshen operation means to install a new version of a package only if you have already installed
another version of the package.

Install
An install operation installs a package for the first time. It also, through special command-line
parameters, allows you to install multiple versions of a package, usually not what you want. So, in
the vast majority of cases, you want to run the upgrade operation for all package installations.

The following sections cover the command-line options that apply to these operations.

3.2.1. Upgrading with the rpm command

Almost all installation steps use the rpm command with the –U option, short for upgrade, as introduced
in Chapter 2, RPM Overview . The basic syntax is:

rpm -Upackage_name

For example:

rpm –i jikes-1.16-1.i386.rpm

You can also use the --upgrade long option in place of -U.

Unless something goes wrong, you won’t see any response except for the shell prompt ready for your
next command. Options for the rpm command, covered shortly, present positive feedback that the
package has been installed.

The rpm command may print out warnings, such as the one following:

warning: pyxf86config-0.3.1-2.i386.rpm: Header V3 DSA signature: NOKEY, key ID 897da07a

This warning comes from the fact that the package was signed, but the key was not found. Chapter 11,
Controlling the Build with rpmbuild covers signing packages. In most cases, warnings such as this
one are not that serious. Errors, though, should be treated seriously.

root Permissions
Just about every package you want to upgrade or install requires root, or super user,
permissions. That’s because most Linux application RPMs hold files that must be installed
in a protected directory such as /usr/bin/. In addition, RPM requires root access to
modify the RPM database. Even if you could modify the system directories like /usr/
bin/, you must also be able to modify the RPM database to successfully install or remove
packages.

Upgrading with the rpm command

21

3.2.1.1. Checking That the Package Is Installed
Use the rpm –q command to quickly verify a package has been installed. To verify, you need to use
the name of the installed package, not the name of the RPM file. You can also use a partial package
name, such as jikes in this case. For example:

rpm –q jikes

When you run this command, you should see a response like the following:

jikes-1.16-1

The response shows that the package named jikes-1.16-1 has been installed. This package name
corresponds to the RPM file used in the preceding installation example.

The rpm -q command just asks the RPM database if the package has been installed. There may be
other issues with the package that this command won’t show. For now, though, the rpm –q command
verifies that package has been installed.

If the package has been not installed, you will see a message similar to the following:

package jikes is not installed

3.2.1.2. Getting Feedback During Installation and upgrades
The -h option to the rpm command prints out # signs, also called hash marks (hence the -h). These
hash marks provide some confirmation that the rpm command is still running. This is important, since
large packages may take a long time to install or upgrade. Run this command like the following:

rpm -Uh jikes-1.16-1.i386.rpm

You'll see this output:

[100%]
 [100%]

The hash marks are printed one at a time as the command does its work. If the package was not
created properly, you may see warnings like the following:

[100%] warning: user cabbey does not exist - using
 root warning: user cabbey does not exist - using root warning: user cabbey does not exist -
 using root ### [100%]

Chapter 3. Using RPM

22

Reinstalling Packages
You can install a package more than once. The rpm command won't complain. The
upgrade operation, though, will remove all other versions of a package. This is one more
reason to use the –U upgrade option.

In addition to hash marks, you can get more verbose output from the tight-lipped rpm command. The
-v option to the rpm command tells the command to print out verbose information as the command
runs. Remember, though, that verbose is used in the traditional Unix and Linux meaning, which is
normally not all that verbose. In the Unix/Linux context, verbose usually means slightly more than
nothing. The syntax for the command follows:

rpm -Uhv jikes-1.16-1.i386.rpm

With the -v command-line option, you will see output more like the following:

Preparing... ### [100%] 1:jikes
 ### [100%]

Standard Command for Package Installation
The most common command to install a package is rpm -Uhv package_file.rpm.
That is, upgrade with verbose output and hashes.

To get extra verbose information, use the -vv command-line option. Think of this as doubly verbose.
Usually, though, this extra information has no meaning unless you are debugging an RPM package
that you are building. See the chapters in Part II on Creating RPMs for more on how to build RPM
packages.

A double-verbose command uses much the same syntax as shown previously:

rpm -Uhvv jikes-1.16-1.i386.rpm

With the double-verbose option, the output appears as follows:

D: ============== jikes-1.16-1.i386.rpm D: Expected size: 702988 =
 lead(96)+sigs(100)+pad(4)+data(702788) D: Actual size: 702988 D: jikes-1.16-1.i386.rpm:
 MD5 digest: OK (2dba32192eca23eb480d1d02a9b6c022) D: added binary package [0] D: found 0
 source and 1 binary packages D: opening db environment /var/lib/rpm/Packages joinenv D:
 opening db index /var/lib/rpm/Packages rdonly mode=0x0 D: locked db index /var/lib/rpm/
Packages D: ========== +++ jikes-1.16-1 D: opening db index /var/lib/rpm/Depends create
 mode=0x0 D: Requires: rpmlib(PayloadFilesHavePrefix) <= 4.0-1 YES (rpmlib provides) D:
 opening db index /var/lib/rpm/Providename rdonly mode=0x0 D: opening db index /var/lib/
rpm/Pubkeys rdonly mode=0x0 D: read h# 9 Header V3 DSA signature: NOKEY, key ID 897da07a
 D: Requires: ld-linux.so.2 YES (db provides) D: read h# 9 Header V3 DSA signature: NOKEY,
 key ID 897da07a D: Requires: libc.so.6 YES (db provides) D: read h# 9 Header V3 DSA
 signature: NOKEY, key ID 897da07a D: Requires: libm.so.6 YES (db provides) D: read h# 633
 Header V3 DSA signature: NOKEY, key ID 897da07a D: Requires: libstdc++-libc6.2-2.so.3 YES
 (db provides) D: read h# 9 Header V3 DSA signature: NOKEY, key ID 897da07a D: Requires:

Upgrading with the rpm command

23

 libc.so.6(GLIBC_2.0) YES (db provides) D: read h# 9 Header V3 DSA signature: NOKEY, key
 ID 897da07a D: Requires: libc.so.6(GLIBC_2.1) YES (db provides) D: read h# 9 Header V3 DSA
 signature: NOKEY, key ID 897da07a D: Requires: libc.so.6(GLIBC_2.1.3) YES (db provides)
 D: Requires: rpmlib(CompressedFileNames) <= 3.0.4-1 YES (rpmlib provides) D: closed db
 index /var/lib/rpm/Pubkeys D: closed db index /var/lib/rpm/Depends D: closed db index /var/
lib/rpm/Providename D: closed db index /var/lib/rpm/Packages D: closed db environment /var/
lib/rpm/Packages D: ========== recording tsort relations D: ========== tsorting packages
 (order, #predecessors, #succesors, tree, depth)D: 0 0 0 0 0 +jikes-1.16-1 D: installing
 binary packages D: opening db environment /var/lib/rpm/Packages joinenv D: opening db
 index /var/lib/rpm/Packages create mode=0x42 D: getting list of mounted filesystems D:
 sanity checking 1 elements D: opening db index /var/lib/rpm/Name create mode=0x42 D:
 read h# 707 Header sanity check: OK D: computing 3 file fingerprints Preparing... D:
 computing file dispositions D: opening db index /var/lib/rpm/Basenames create mode=0x42
 ### [100%] package jikes-1.16-1 is already installed
 D: closed db index /var/lib/rpm/Basenames D: closed db index /var/lib/rpm/Name D: closed db
 index /var/lib/rpm/Packages D: closed db environment /var/lib/rpm/Packages

Short and Long Options
Although most Unix and Linux applications use a single minus sign for command-line
options, such as rpm -U, many programs use two minus signs to indicate longer option
names. For example, with the rpm command, -U and --upgrade are treated the same.
You can use the short option, -U, or the long option, --upgrade.

There are long options for virtually every short option. There are also long options that are
rarely used, for which there are no short options.

One rarely used feedback option is --percent. The --percent option prints out decimal numbers
that show the percentage completed as the rpm command executes. This option is most useful if you
wrap the rpm command within some other command, such as a graphical user interface created from
a Perl, Python, or Tcl/Tk script.

The basic syntax is:

rpm -U --percent jikes-1.16-1.i386.rpm

When you run this command, you see output like the following:

%% 0.000000 %% 2.661902 %% 5.318614 %% 10.632039 %% 15.945465 %% 18.602177 %% 23.915603 %%
 29.229028 %% 34.542453 %% 39.855879 %% 45.169304 %% 50.482729 %% 53.139442 %% 55.796154 %%
 61.109580 %% 66.423005 %% 71.736430 %% 74.393143 %% 79.706568 %% 82.363281 %% 87.676706 %%
 90.333419 %% 95.646844 %% 98.303557 %% 99.422736 %% 99.910411 %% 99.994892 %% 100.000000

These decimal numbers output by the --percent option are really meant to be input into another
program, perhaps a program that shows a graphical progress meter. Each number output then
updates the meter.

Percentages may be Approximate
Don't trust the numbers too much. Claiming the package is 53.139442 percent installed
just asks the user to be skeptical that it is exactly that far.

Chapter 3. Using RPM

24

3.2.1.3. The Installation Task In Detail
You can use the rpm –U command or the rpm –i command to install a package. When the rpm
command installs a package, it goes through a number of steps:

1. Checking the package and the files it wants to install

2. Performing preinstallation tasks

3. Uncompressing the files and placing them in the proper locations

4. Performing post-processing tasks

5. Updating the RPM Database

When checking the package, rpm checks that all the dependencies are installed. Dependencies are
packages required by the RPM package you want to install. For example, a database-administration
package for a particular database may require that the database itself was already installed.

In addition to checking for dependencies, the rpm command checks for conflicting packages. For
example, when you are trying to install an older version of a package on top of a newer version,
running the rpm command alerts you to that conflict. This conflict-checking goes deeper than
packages, though. Individual files may conflict if you are trying to install a package that has an older
version of a particular file.

After the checks, the rpm command executes the preinstallation tasks (covered in depth in Part II).
After all this preparatory work, the rpm command finally gets down to business and installs the files
in the package. These files are stored in compressed format (compressed with gzip compression)
inside the RPM file.

After installing the files, there may be some post-processing tasks (also covered in Part II). At the end
of its run, the rpm command updates the RPM database to reflect the new package information. This
update is very important and allows you to track packages.

3.2.1.4. Taking a Test Drive
The --test command-line option tells the rpm command to test the installation or upgrade process
but not to install the file. For example, the following command performs an upgrade or install of the
jikes package, but in test mode only. No files will actually be installed.

rpm -U --test jikes-1.16-1.i386.rpm

This command will print nothing if the tested installation or upgrade runs smoothly. If, on the other
hand, a problem results from the tested installation, you will receive an error message. If the package
is already installed, you will see a message like the following:

package jikes-1.16-1 is already installed

If the file is corrupted, you will see output like the following:

chap4.txt: not an rpm package (or package manifest):

Upgrading with the rpm command

25

This example was run against a file that was clearly not an RPM package.

The test option can help you determine package dependencies, too.

You can often determine dependencies at a glance--if you know something about the software you are
installing. For example, if you know that Ruby is a scripting language, you can guess that packages
starting with eruby, such as eruby-devel-0.9.8-2.i386.rpm, will depend on a base ruby
package.

To show this, query for any ruby packages by using a command like the following:

rpm -q ruby

If you have not installed a ruby package, you'll see a message like the following:

package ruby is not installed

Package Names
Most packages use all lowercase names. Thus, you can expect packages for the Ruby
scripting language to start with ruby.

Package dependencies can quickly devolve into a nightmare in which one package depends upon
another and that package in turn depends on yet another.

This is where the --test option comes in handy, since you can check that the dependencies are
resolved prior to trying to install. (Note that the rpm command will check dependencies on real installs
as well. The --test option just allows you to check that the installation will succeed prior to trying it.)
For example, if you try to install a package named eruby-devel-0.9.8-2.i386.rpm, you may
want to run a --test option first:

rpm -U --test eruby-devel-0.9.8-2.i386.rpm

You'll then see a response like the following, presuming you have no ruby packages installed:

error: Failed dependencies: eruby-libs = 0.9.8 is needed by eruby-devel-0.9.8-2

Now you can see that the package in the file eruby-devel-0.9.8-2.i386.rpm depends on
another package, eruby-libs in this case. In fact, this package depends on the eruby-libs
package having a version number of 0.9.8. These packages are obviously interrelated. From the
name eruby-libs, you can guess that the package will be in a file with a name like eruby-
libs-0.9.8-2.i386.rpm. (I cheated and used the actual package on the Red Hat installation
CDs.)

But you can see how the version numbers of the two files, and the RPM revision levels, match up, as
follows:

eruby-devel-0.9.8-2.i386.rpm

Chapter 3. Using RPM

26

eruby-libs-0.9.8-2.i386.rpm

So, now you think your problems are over. You have the package that eruby-
devel-0.9.8-2.i386.rpm depends on: eruby-libs-0.9.8-2.i386.rpm. Just to be careful,
though, you can test that package as well, with a command like the following:

rpm -U --test eruby-libs-0.9.8-2.i386.rpm

Alas, this output leads you farther down into dependency nightmare:

error: Failed dependencies: ruby-libs >= 1.6.4 is needed by eruby-libs-0.9.8-2 libruby.so.1.6
 is needed by eruby-libs-0.9.8-2

This short example shows why it makes sense to test packages prior to installing or upgrading them.

3.2.1.5. Installing or upgrading More Than One Package At A Time
Up to now, all the examples shown have used the rpm command to install or upgrade one package at
a time. You can optionally choose to install or upgrade a number of packages at the same time. Just
list each file name on the rpm command line. The basic syntax follows:

rpm -U package1.rpm package2.rpm .. package100.rpm

Simply list all the packages one after another. For example:

rpm -U aspell-en-ca-0.33.7.1-16.i386.rpm aspell-en-gb-0.33.7.1-16.i386.rpm

This command installs two packages, the aspell packages for Canadian and British English,
respectively.

The --noorder option tells the rpm command not to reorder the packages you are trying to
install. Usually, the rpm command will reorder the list of packages in the best order for handling the
dependencies. This option really only comes into play when you are installing more than one package
where the packages depend on each other. In most cases, you do not want to use this option, since
this may mean that packages fail to properly install because necessary packages are not already
installed.

3.2.1.6. Installing in Different Directories
The --prefix and --relocate options should make the rpm command relocate a package to a
new location. Not all packages allow relocations, though. The basic format of the command with the
--prefix option is:

rpm -U --prefix /new/directory package.rpm

With the --relocate option, the command format is:

Upgrading with the rpm command

27

rpm -i --relocate /old/directory=/new/directory package.rpm

You can also use the --root option to specify a different directory for the rpm command to assume
is the system's root, or /, directory. This causes the rpm command to install files under the new
root, instead of in system locations under /. This option is most useful for testing the installation of a
complete system under a test directory. The command should use the following format:

rpm -U --root /tmp --dbpath /var/lib/rpm jikes-1.16-1.i386.rpm

The --root option tells the rpm command that the root for this install is in /tmp/. Installs with the
--root option take place within a chroot() environment. This is often useful for setting up a test
environment.

The --dbpath option tells the rpm command that the RPM database is located in the normal location,
/var/lib/rpm/.

Using the --dbpath and --root options will give you problems unless you have installed all the
dependencies in the same virtual root directory. This includes all the standard Linux C libraries. For
example, if you just run the example command, you'll see error output like the following:

error: Failed dependencies: ld-linux.so.2 is needed by jikes-1.16-1 libc.so.6 is needed
 by jikes-1.16-1 libm.so.6 is needed by jikes-1.16-1 libstdc++-libc6.2-2.so.3 is needed by
 jikes-1.16-1 libc.so.6(GLIBC_2.0) is needed by jikes-1.16-1 libc.so.6(GLIBC_2.1) is needed by
 jikes-1.16-1 libc.so.6(GLIBC_2.1.3) is needed by jikes-1.16-1

You can use the --badreloc option with the --relocate option to permit relocations on all files in
the package. Usually, only those paths to files that are listed as relocatable are supported by the --
relocate option.

3.2.1.7. Forcing the Issue
A number of rpm options cause the rpm command to complain about problems and, in general, fail to
install your package. You can use a number of options to run roughshod over the RPM and get it to do
what you want.

The --replacepkgs option tells the rpm command to replace, or reinstall, packages it may have
already installed.

The --replacefiles option tells the rpm command to overwrite files owned by a another package.

The --justdb option tells the rpm command to update the RPM database, not to install the files. You
will need to be logged in as the root user to modify the RPM database.

The --nosuggest option tells the rpm command to skip any suggestions for packages that may fill in
missing dependencies. You almost never want to use this option.

The --excludepath option tells the rpm command to exclude all files that start with the given path.
For example:

rpm -U --excludepath /usr/lib eruby-devel-0.9.8-2.i386.rpm

Chapter 3. Using RPM

28

This command installs or upgrades all the files in the package, except for those files that would be
placed in a directory starting with /usr/lib/.

The --allfiles option tells the rpm command to install or upgrade all files in the package,
regardless of whether the files exist or not on your hard disk.

The --oldpackage tells the rpm command to allow you to install an older version of a package on
top of a more recent one. You don't usually want to do this, but you may need to under the following
circumstances:

1. If the more recent package has some bug or security vulnerability and you need to downgrade to a
former version.

2. If the more recent package won't work with some other package that depends on a particular
former version of a package.

The latter case is very common if you upgrade your system in a piecemeal fashion. If a low-level
library changes, it may take a while for all the packages that depend on the low-level library to get
updated to use the latest version.

Note that when you purchase an upgraded version of Linux, such as Red Hat Linux, all the packages
with the product should be properly aligned with each other as to versions. This alignment problem
is an issue that the Linux vendors, such as Red Hat, need to take care of. The main problems occur
when you need packages beyond those offered with your Linux distribution.

To combine some of these options, you can use --force, which tells the rpm command to turn on the
--replacepkgs, --replacefiles, and --oldpackage modes.

The --nodeps command-line option tells the rpm command to skip the dependencies check and
install anyway.

Avoid Forcing Package Operations
The rpm command complains with good reason. Unless you really, really know what you
are doing, don't force the issue by using these command-line options.

Consider the eruby-devel-0.9.8-2.i386.rpm from the previous example. You can force the rpm
command to install this package, even though it depends on another package that in turn depends
on yet another. The following command will force the installation of the package in the eruby-
devel-0.9.8-2.i386.rpm file:

rpm -U --nodeps eruby-devel-0.9.8-2.i386.rpm

Just to be sure, you can query for the package using a command like the following.

rpm -q eruby-devel

The response should be:

Upgrading with the rpm command

29

eruby-devel-0.9.8-2

The package is installed, but it likely won't work, since it really does depend on other packages.
These package dependencies aren’t for show. You may have a valid reason to force a package to get
installed, but you should go back later to try to resolve all the dependencies.

In addition to forcing the rpm command not to do certain things, you can use the --aid option to
have the rpm command do something nice for you. The --aid option tells the rpm command to add
all the packages it would suggest into the set of packages to install. The rpm command has enough
information to suggest a package or packages that ought to contain the dependent files.

The --aid option depends on a separate package that contains an RPM database with all packages
installed. For Red Hat Linux, this package is rpmdb-redhat. This separate database, built as if all
packages were installed (all packages that come with Red Hat Linux in this case), allows the rpm
command to search for which packages would solve dependencies.

3.2.1.8. Skipping the Scripts
As part of the package installation, as well as removal, the RPM package may have scripts that
the rpm command should run. These include pre- and post-installation scripts, as well as pre- and
post-uninstallation scripts. These scripts can perform options such as automatically configuring the
application based on the target environment. For example, an installation script may try to detect
whether a site uses Postfix or Sendmail for transferring mail messages and configure the newly-
installed package accordingly.

In most cases, the rpm command will execute these scripts at the proper time, unless you explicitly
turn the command to skip the scripts. The --noscripts option tells the rpm command to skip
running the pre- and post-installation scripts.

If you want, you can exercise a finer grain of control. The --nopre option tells the rpm command
to skip any pre-installation scripts. The --nopost option tells the rpm command to skip any post-
installation scripts.

Similarly, the --nopreun option tells the rpm command to skip any pre-uninstallation scripts, and the
--nopostun option tells the rpm command to skip any post-uninstallation scripts.

The --noscripts option is the same as turning on all these options.

The table below summarizes these options.

Option Usage

--nopre Skip pre-installation scripts.

--nopost Skip post-installation scripts.

--nopreun Skip pre-uninstallation scripts.

--nopostun Skip post-uninstallation scripts.

--noscripts Skip all the scripts; same as --nopre, --
nopost, --nopreun, and --nopostun.

Table 3.1. Skipping scripts

In most cases, you never want to disable these scripts. Many RPMs uses these scripts to perform
the final steps of the installation, especially the post-installation scripts. For example, the Mozilla Web

Chapter 3. Using RPM

30

browser and most network services require some kind of post-processing (using a post-installation
script) or the packages will not be properly installed.

In addition to pre- and post-installation scripts, the RPM system supports triggers, a topic covered in
detail in Chapter 10, Advanced RPM Packaging.

During installation, you can tell the rpm command not to execute all the triggers or not to execute
certain triggers. The --notriggers option tells the rpm command to skip all triggers.

You can gain more fine-grained control with a further set of options in place of --notriggers. The
--notriggerin option turns off triggers during installation. The --notriggerun option turns off
uninstallation triggers, and the --notriggerpostun option turns off the post-uninstallation triggers.

The --notriggers option is the same as all three, --notriggerin, --notriggerun, and --
notriggerpostun.

The table below summarizes these options.

Option Usage

--notriggerin Skip installation triggers.

--notriggerun Skip uninstallation triggers.

--notriggerpostun Skip post-uninstallation triggers.

--notriggers Skip all the triggers; same as --notriggerin,
--notriggerun, and --notriggerpostun.

Table 3.2. Skipping Triggers

3.2.1.9. Ignorance Is Bliss
The rpm command supports several ignore options that tell the command to ignore some aspect of a
package it would normally complain about.

The --ignorearch option tells the rpm command to ignore the architecture of the package and
install the package, even if the architecture of the package and the architecture of your system do not
match. This is a very dangerous option. Linux runs on everything from tiny wristwatches, PDAs such
as the Sharp Zaurus, PCs, Macintosh PCs, RISC servers, and all the way up to huge supercomputers
and mainframes. If you try to install a binary package compiled for the ARM or PowerPC processor on
an Intel-architecture Linux system, the package will at best fail. At worst, it may damage parts of your
system.

Similarly, the --ignoreos command-line option tells the rpm command to ignore the operating
system. Again, this is likely not a good idea in most situations. Applications compiled for Windows
generally won’t run on Linux. SCO Unix systems, however, can run some Linux applications, so you
may have a valid reason to ignore the operating system. Again, use only with extreme care.

The --ignoresize option tells the rpm command to ignore or skip a check of your hard disk to
ensure it has enough space to install the package.

Ignoring Storage Limits
Don't use the --ignoresize option if you have a nearly full hard disk, especially for a
root, or /, partition.

Upgrading packages

31

The --nodigest option tells the rpm command to skip the test of the digest, the special value that
helps verify the package correctness.

The --nosignature option tells the rpm command to skip the test of the digest, the encrypted key,
that helps also verify the package correctness.

Unsafe Options
Use these rpm command-line options with extreme care and only after carefully
considering the circumstances. Wrongful use of these options may damage your operating
system.

3.2.1.10. Documentation? What Documentation?
The --excludedocs command-line option tells the rpm command to ignore any files in the RPM
package that are marked as documentation. Considering the general lack of documentation for many
Linux applications, you are really asking for trouble by invoking this option. If the documentation takes
up a lot of disk space, however, you may want to avoid installing documentation files. This is about the
only situation in which this option makes sense.

In reverse of --excludedocs, the --includedocs command-line parameter tells the rpm
command to install documentation. This is usually the default, so you rarely need this option.

3.2.2. Upgrading packages
The rpm –U command works for both installation of new packages and for upgrading. When you get
beyond simple installations, you begin to see the power of the RPM system where most operations
require just one command. The rpm -U command is a very powerful tool and performs some complex
operations with just one command. For example, the following commands show the sequence for
upgrading the jpilot package, which is used for Palm PDA synchronization.

rpm -q jpilot

jpilot-0.97-1

rpm -U jpilot-0.99.2-8.i386.rpm # rpm -q jpilot

jpilot-0.99.2-8

Note that the old version of the jpilot package is no longer installed. The rpm -U command
removed that package.

3.2.2.1. Options When Upgrading
You can pass more than one package name on the command line when upgrading. In addition, you
can use the installation and upgrade options discussed previously when upgrading.

Chapter 3. Using RPM

32

Uninstallation Scripts
When upgrading, the --noscripts option only turns off the scripts from the new
package. If an old package is removed, the uninstallation scripts for the old package still
get executed.

When upgrading, you can also use the --repackage option, which works the same as when
removing packages. The --repackage option tells the rpm command to create a package, an RPM
file, from any packages it would erase. Note that this option will not create a complete package. You
will not be able to reinstall a package created by the --repackage option. At best, the --repackage
option provides a backup of the old package, from which you could create a working package. Be
careful with the --repackage option.

For example, the following command shows how to upgrade a package with the --repackage
option.

rpm -U --repackage jpilot-0.99.2-8.i386.rpm

Consistent Package Names
Upgrading and freshening depend on versions of a particular package keeping the
same base package name between versions. For most packages this is true, but some
packages violate this convention. For example, the Java programming developer's kit
(JDK) uses the name jdk-1.3.1_01.i386.rpm for the 1.3.1 version but changes to
j2sdk-1_4_0_01-fcs-linux-i386.rpm for the 1.4.0 version.

Watch out for package-name changes like this.

3.2.2.2. Smart Upgrades
The rpm command really shines in the upgrade process. Not only can you upgrade a package with
one simple command, but the rpm command has some built-in smarts that really help.

When upgrading, the rpm command checks each file in the package. It actually compares checksums
of the files. An MD5 checksum is a small value computed from the data in a file. Any change to a file
results in a different checksum value.

The rpm command compares the checksums of three versions of each file: the version of the file from
the old package, the version of the file in the new package, and the version of the file on disk.

The rpm command looks at all three versions of the files to handle the common case where you may
have edited a configuration file on disk. This is where the rpm command starts working with some
upgrade rules. Note that this special processing only applies to files marked as configuration files
within the RPM. Chapter 9, Working with Spec Files covers how to mark files as configuration files.

If the file on disk is identical to the file in the original package, meaning you have not changed the file,
the rpm command simply installs the file from the new version of the package on top of the old file.

If the original package configuration file and the new package file are the same, that is, the file has
not changed between the package versions, but the configuration file has been changed on disk,
the rpm command leaves that file alone. The rpm command makes the assumption that if the file

Freshening up

33

hasn’t changed between versions of the package, and you have modified the file, chances are your
file will work with the new package. This takes care of the common case where you have edited an
application’s configuration files.

But if the file on disk is different from the original version of the file, and the file on disk is different
from the new version of the file, the rpm command installs the new version of the file on top of your
changed version. This is because the new version of the file is known to work with the new package.
The rpm command saves your work by backing up your modified configuration file, renaming the
file with a new .rpmsave extension. The rpm command also warns you that it is backing up your
modified file with a message that tells you the old file name and the new file name.

If the RPM package uses the option %config(noreplace) with the file, then the rpm command will
store the new file with a rpmnew extension if you have modified the file on disk.

3.2.3. Freshening up
A freshen operation means to install a new version of a package only if you have already installed
another version of the package. Thus, a freshen operation is very similar to the upgrade operation
except that a freshen requires you to have previously installed the package, while an upgrade can
install a package for the first time. The basic syntax for freshening a package is to use the -F option.

rpm -F package_name

You can also use the --freshen long option in place of -F.

As with upgrading, the options to the rpm command are the same, except for the -F or --freshen
option that indicates the operation. These are the options discussed in the sections on upgrading and
installing software.

3.2.4. Installing Packages
The –i or --install option tells the rpm command to run an installation operation, which, as you’d
suspect, installs packages. The basic syntax is:

rpm –i filename.rpm

For example:

rpm –i jikes-1.16-1.i386.rpm

Use Upgrade, Rather Than Install
You should normally install packages with rpm -U, not rpm -i. One of the main reasons
is that rpm -i allows you to install multiple instances of the same (identical) package. This
is usually not what you want.

The rpm –i command works with the installation options discussed previously. The –U, -F and –i
options all accept mostly the same options, except as discussed previously.

Chapter 3. Using RPM

34

3.2.5. Installing Over the Internet
All the commands to install packages covered so far assume that you have a local RPM file that you
want to install. This is by far the most common case, but you can also use the rpm command to install
packages available on a network. With the rpm command, you can get the packages to install by using
the FTP or HTTP network protocols.

With the File Transfer Protocol (FTP), the rpm command connects to an FTP file server, downloads
the named package, and installs that package. With the HyperText Transfer Protocol (HTTP) used for
Web pages, the rpm command connects to a Web server, downloads the named package, and installs
that package.

Name Spoofing
When using either FTP or HTTP, you need to provide the name of the remote server. An
attack on your system can compromise the system of converting server host names into
network addresses, thus spoofing the rpm command into installing a malicious package
from the wrong host.

3.2.5.1. Installing Using FTP
The key to making the network protocols work with the rpm command is that you need to create a
URL for the remote file name. The basic format of the command follows:

rpm -i ftp://hostname/path/to/file/filename.rpm

Note the use of ftp: in the URL for the file.

For example, the following downloads a package from an IBM FTP server.

rpm -i ftp://www-126.ibm.com/pub/jikes/jikes-1.16-1.src.rpm

Many FTP servers require users to log in. If you do not pass a user name and password on the rpm
command line, the rpm command will prompt you for the missing data.

You can add a user name prior to the host name, separating the user name from the host name with
an at sign, @. For example:

rpm -i ftp://unclejoe@www-126.ibm.com/pub/jikes/jikes-1.16-1.src.rpm

In this case, the user name is unclejoe.

Credentials are Examples
These examples do not show valid user names or passwords.

With just a user name, the rpm command will prompt you for the password. You can also include the
password on the rpm command line. Separate the user name from the password with a colon (:).

Installing source RPMs

35

For example:

rpm -i ftp://unclejoe:workers@www-126.ibm.com/pub/jikes/jikes-1.16-1.src.rpm

In this case, the user name is unclejoe and the password is workers.

3.2.5.2. Installing Using HTTP
The rpm command supports the HTTP protocol, used by most Web servers, as well as FTP. Similar to
accessing a file via FTP, you need to pass the rpm command a URL identifying the file. For example:

rpm –i http://ftp.redhat.com/pub/contrib/noarch/SRPMS/Squeak-sources-3-1.src.rpm

3.2.6. Installing source RPMs
Source RPMs contain the source code used to build an application or programming library and the
scripts used to build the software into the application or library. These scripts are called the recipes for
building the software.

Source RPMs usually contain program source code. They may also contain patches to program
sources, scripts to build the program, special files used by desktop environments, icons, and other
files considered to be part of the source code, such as programming guides.

Patch Files
A patch is a file that contains just the differences between one version of a file and
another. The differences include the actual text that has changed and enough contextual
information that a program can locate where the changes are to take place. Usually, a
patch is created with the diff command, and the source code is patched with the patch
command.

In most cases, each binary RPM will have a corresponding source RPM. This is not always true,
however.

One source RPM may contain enough shared program code to build multiple application RPMs.
Furthermore, the source code is not available for all packages. Commercial applications, for example,
rarely come with source code. In this case, obviously, no source RPMs are available. Or, a source
RPM for a commercial application may provide no source code, but still provide a way to build the
resulting application. See Chapter 9, Working with Spec Files for more on the source files and options
for not including the sources in a source RPM.

3.2.6.1. Open-source Software
Linux, and thousands of applications that run on Linux, are called open-source software. That’s
because the program source code for Linux and these applications are available.

Many users feel having access to the source code is vital, especially because:

• Vendors may stop supporting a package. With the sources, you can conceivably maintain the
packages yourself, or more likely, others can take up the task and maintain these crucial packages.

Chapter 3. Using RPM

36

• Having the source code makes it easier to track down and fix security vulnerabilities, although
malicious users also have access to the same source code.

• You can enhance and extend packages for which the program sources are available.

Linux applications are available under a variety of open-source licenses. (In fact, it may seem that
there are as many licenses as packages.) See the site http://www.opensource.org/licenses/ for details.

3.3. Removing Software
The rpm command is good for more than just installing and upgrading software packages. Many
times, you will need to remove packages as well.

To remove a package, use the -e option to the rpm command, short for erase. The basic syntax
follows:

rpm -e package_name

Use Package Names, Not File Names
When erasing or removing packages, use the package name, not the RPM file name. If
you think about this, it makes sense. You don't always have the original RPM files when
the time comes to remove a package.

For example:

rpm -e jikes-1.16-1

This example removes the jikes-1.16-1 package used in previous examples.

root Access is Required
You will need to use the root account, or super user, to remove most packages. This is
because the package files themselves are protected. In addition, the RPM database is
protected.

This is only natural, since most RPMs are used to install system-level commands and applications.

When removing a package, the rpm command first checks that no other packages depend on the
package you intend to remove. This is very important, since you otherwise can damage your Linux
system by inadvertently removing packages needed by the rest of the system.

The rpm command supports the --test option for removing packages as well as when installing.
As with installing, the --test option tells the rpm command to test to see whether it can remove the
given package but not to force the removal.

For example, if you try to remove the very important-looking syslinux-1.75-3 package, you can
use the --test option to see if this works.

For example:

http://www.opensource.org/licenses/

Checking that the package has been removed

37

rpm -e --test syslinux-1.75-3

This command will issue an error such as the following:

error: Failed dependencies: syslinux is needed by (installed) mkbootdisk-1.4.8-1

Alternative Option Name
When removing packages, you can use the long option name, --erase, in place of –e.

3.3.1. Checking that the package has been removed
As before, you can use the rpm–q command to query whether a package is installed. After running
the rpm–e command, you can run the rpm –q command to check whether the package has been
removed. If the rpm –q command shows that the package is not installed, that tells you the erase
operation has worked.

For example:

rpm -q jikes

jikes-1.16-1

rpm -e jikes-1.16-1 # rpm -q jikes

package jikes is not installed

3.3.2. Removing multiple packages at a time
You can remove multiple packages at once by listing each package consecutively on the command
line. For example:

rpm -e aspell-en-ca-0.33.7.1-16 aspell-en-gb-0.33.7.1-16

This command removes the aspell-en-ca-0.33.7.1-16 and aspell-en-gb-0.33.7.1-16
packages.

3.3.3. Options when removing packages
The --allmatches option tells the rpm command to remove all packages with names that match
the names you pass on the command line. If you do not use the --allmatches option, the rpm

Chapter 3. Using RPM

38

command will issue an error if more than one package matches the name or names you pass on the
command line.

The --nodeps option tells the rpm command to skip the test of dependencies. Use this option when
you really, really, want to uninstall a package.

Unsafe Commands
Using any option that does not perform the full removal of the package, or skips some of
the checks built into the rpm command, can result in damage to your Linux system. Use
these options with care.

The --repackage option, described previously, tells the rpm command to create a package, an RPM
file, from any packages it would erase. These packages will appear in the default repackage directory,
which is normally /var/spool/repackage/. Check your RPM settings to be sure of the directory
configured on your system.

Repackaged Files
Packages created with the --repackage option are not full packages. You cannot install
these packages.

Similar to the options when installing or upgrading packages, you can use the --noscripts and --
notriggers options when removing packages. The --noscripts option tells the rpm command
not to run any uninstallation scripts. You can refine this by using either --nopreun or --nopostun in
place of the --noscripts option.

The --nopreun option tells the rpm command not to run the pre-uninstallation scripts. The --
nopostun option tells the rpm command not to run the post-uninstallation scripts.

The --notriggers option works in a similar fashion. The --notriggers option tells the rpm
command not to execute any triggers. For a finer grain of control, use --notriggerun to prevent any
uninstallation triggers and --notriggerpostun to prevent any post-uninstallation triggers.

3.4. Other rpm Command Options
Options such as -v (for more verbose output) work with the rpm command for installing, removing,
and upgrading packages, as well as most other uses of the rpm command.

Other rpm command options, which work with most RPM actions, include --quiet to turn off most
output except for errors, and --root, covered previously.

The --rcfile option tells the rpm command to use one or more other files to initialize the RPM
system. These files tell the rpm command the system architecture, operating system, and default
location of the RPM database, among a host of other settings.

rc Files
The term rc comes from Unix shells, with initialization files such as .cshrc for the C
shell, csh. The term rc was originally a shorthand for run commands. An rc is a file of

Other rpm Command Options

39

commands that run when the application starts up. For example, the C shell, csh, runs
the commands in file named .cshrc when the shell starts.

In most cases, the application looks in the user home directory for a specific file tied to the application.
For the rpm command, this file is .rpmrc. The leading period makes the file hidden for most directory
listings.

In addition to the user-level file of commands, most applications supporting this mechanism have a
way for site administrators to customize the command for all users. For example, your system may
have a file named /etc/rpmrc (with no leading period) that customizes the rpm command for all
users on your system. See Chapter 20, Customizing RPM Behavior for a more in-depth look at the
chain of these files.

The syntax for the --rcfile option is

--rcfile filename

You can also supply more than one file name. This syntax follows:

--rcfilefilename1:filename2:filename3

Separate each file name with a colon.

With Red Hat Linux, the default set of initialization files are:

/usr/lib/rpm/rpmrc:/usr/lib/rpm/redhat/rpmrc:/etc/rpmrc:~/.rpmrc

Tilde (~) Denotes Home Directory
The ~/.rpmrc means to look in the user's home directory for a file named rpmrc.

You can use the --showrc option to list all the rc settings.

The --showrc Option
See Chapter 20, Customizing RPM Behavior for more on the --showrc option.

The --version option tells the rpm command to print out the version number of the command and
then exit. For example:

rpm --version

This command prints out a version number, like the following:

RPM version 4.1

The --dbpath option, mentioned previously, tells the rpm command to use a different RPM database.
This is useful when testing a complete system install, where you want to change the RPM database

Chapter 3. Using RPM

40

but don't want that to affect your running Linux system. In this case, you can use a different RPM
database and test out your changes. The basic syntax for this option is:

--dbpathdirectory_name

The --pipe option tells the rpm command to send, or pipe, its output to another program. The syntax
for this option is:

--pipecommand_to_send_out_to

3.5. Summary
This chapter covered the easy part of managing packages, the common actions of installing,
removing, and upgrading software.

The rpm –e command removes packages. The rpm –U command upgrades packages by installing
new packages and removing old versions of all the packages upgraded. RPM upgrades also work for
installing new packages. The rpm–F command freshens packages. This command only upgrades a
package if an older version of the package has already been installed. The rpm –i command installs
packages.

The table below summarizes the rpm command-line options for installing, removing, and upgrading
packages.

Command Usage

rpm –i install_options package_files Install packages.

rpm –e remove_options packages Erase, remove, packages.

rpm –U install_options package_files Upgrade or install packages. Use this option for
installations.

rpm –Uvh install_options
package_files

Upgrade or install packages with extra output.
This is the recommended command to install
packages.

rpm –F install_options package_files Freshen packages.

Table 3.3. Installing, Removing, and Upgrading with the rpm command

Unfortunately, modern system management gets more complex than that. The next chapter delves
into package dependencies and the nightmare you can get into when one package depends on
another that then depends on another, ad infinitum.

Chapter 4.

41

Using the RPM Database
This chapter covers:

• Querying the RPM database

• Getting information on RPM files

• Finding out which packages own files on your system

• Verifying installed packages

• Backing up the RPM database

• Repairing damaged RPM databases

Every package you install with RPM is recorded in the RPM database. The RPM system includes
commands to query this database to find out which packages are installed and to provide quite a few
details about these packages.

This chapter covers querying both the RPM database and RPM package files. Both types of query are
important:

*Query the RPM database to see what is installed, or not installed, on your system.

*Query package files to see what the files require, as well as what the files provide.

In addition to querying the RPM database, you can use the database to verify packages. Since this
database is so important to the management of your Linux system, this chapter covers how to back it
up, as well as how to repair a damaged RPM database.

4.1. Querying the RPM Database
In Chapter 3, Using RPM , you saw that the rpm command usually takes one major command-line
option to tell it the operation to perform and a myriad of command-line options to customize the
operation. The rpm command may also take the name of one or more RPM package files or the
name of one or more installed packages. For example, the rpm –i command performs an installation
operation, and the rpm –U command performs an upgrade.

For querying the RPM database, the major command-line option is –q, short for query. This option tells
the rpm command to query the RPM database. You can also use the long option --query.

In the last few chapters, you've used the –q option with the rpm command to query just for the
presence or absence of installed packages. You can expand the -q option to perform a wide array of
queries to find out information about the packages installed on a Linux system.

4.1.1. Querying packages
The basic format of the rpm –q command follows:

rpm –q package_name

You need to provide the name of a package to query. For example:

rpm -q telnet-0.17

Chapter 4. Using the RPM Database

42

This command returns the name of the package, if installed. For example:

telnet-0.17-20

If the package is not installed, you’ll see a message like the following:

package telnet-0.17 is not installed

You can provide the whole package name to the rpm command, which includes the name, the version,
and the RPM package number, as discussed in Chapter 2, RPM Overview . You can also just provide
the name and version number, as shown previously, or just the base name of the package.

For example, the following command uses just the base name of the package:

$ rpm -q telnet

telnet-0.17-20

Note

The rpm –q command expects a package name. Although it supports some amount of customized
queries, you really need to know which packages you want the rpm command to report on.

You can provide more than one package name; the rpm command reports on each package, as shown
following.

$ rpm -q telnet telnet-server

telnet-0.17-20

telnet-server-0.17-20

You need to change the way you query if you want to perform searches when you do not know the full
package name in advance. The following sections cover options for creating various queries.

4.1.2. Querying everything
Up to now, we have used the rpm command to query only for specific packages. The –a option tells
the rpm command to query for all packages. You can also use the longer option, --all, in place of –a.

For example:

rpm -qa

This command returns every package installed on your system, quite a few packages. The packages
are returned one per line, as shown following.

words-2-17

kudzu-0.99.23-1

openldap-2.0.11-13

rpm-4.0.3-1.03

kernel-smp-2.4.7-10

Refining the query

43

quota-3.01pre9-3

expat-1.95.1-7

groff-perl-1.17.2-3

perl-DateManip-5.39-5

perl-libnet-1.0703-6

perl-URI-1.12-5

perl-XML-Parser-2.30-7

perl-XML-Twig-2.02-2

a2ps-4.13b-15

4Suite-0.11-2

XFree86-xfs-4.1.0-3

ghostscript-6.51-12

tcl-8.3.3-65

portmap-4.0-38

bind-utils-9.1.3-4

ftp-0.17-12

micq-0.4.6.p1-2

Note

This output has been modified to meet size constraints. Try the rpm –qa command to see the full
output for your system.

There may be over a thousand packages on your system. Even so, the rpm –qa command executes
surprisingly fast.

4.1.3. Refining the query
When you query all the installed packages, you get too much output for most purposes, other than to
get a general idea of the magnitude of packages installed on your system. But if you cannot remember
a package name, there's no real option, other than writing your own RPM query program.

You can take advantage of the power of the Linux shells, though, and the wonderful ability to pipe the
output of one command into another to work around this problem. With the large amount of output, you
may want to pipe the output to the more or less programs, and display the output one page at a time.

Cross Reference

For more information on the more or less commands, view the online manuals with the man more and
man less commands.

Chapter 4. Using the RPM Database

44

Even with more and less, the rpm –qa command outputs too much information to be really useful,
unless you can somehow filter the information automatically.

4.1.3.1. Piping the Output To grep
The Linux (and Unix) grep command provides a powerful tool for filtering through lots of textual data.
If you pipe the output of the rpm –qa command into the grep command, you have a powerful search
engine—Linux--at your fingertips.

For example, if you know that most packages that use the Python scripting language have a py in their
names, you can find all these packages by using a command like the following:

rpm -qa | grep py

This command outputs packages such as the following:

python-2.2.1-17

pygtk2-1.99.12-7

pyxf86config-0.3.1-2

rpm404-python-4.0.4-8x.27

python-devel-2.2.1-17

gnome-python2-gtkhtml2-1.99.11-8

orbit-python-1.99.0-4

gnome-python2-canvas-1.99.11-8

gnome-python2-bonobo-1.99.11-8

gnome-python2-1.99.11-8

pyOpenSSL-0.5.0.91-1

rpm-python-4.1-1.06

pygtk2-devel-1.99.12-7

kdesdk-kspy-3.0.3-2

mod_python-3.0.0-10

gnome-python2-gconf-1.99.11-8

libxslt-python-1.0.19-1

python-tools-2.2.1-17

libxml2-python-2.4.23-1

pygtk2-libglade-1.99.12-7

python-optik-1.3-2

Refining the query

45

kfloppy-3.0.3-3

You can also use the --pipe option to the rpm command, introduced in Chapter 3, Using RPM . With
this option, your command becomes:

rpm -qa --pipe "grep py"

Cross Reference

Chapter 16, Programming RPM with Python covers programming with the RPM system with the
Python scripting language.

You can take advantage of some of the options that the grep command supports, including -i for
ignoring the case of the string to match, --regexp to pass a regular expression to grep, and -v, to
output only those entries that do not match the search string.

Cross Reference

If you are unfamiliar with grep, the online manual pages for the grep command provide a listing of the
command-line options available for grep as well as a short tutorial on regular expressions supported
by grep.

Table 5-1 lists some of the common package-naming conventions. Remember that these are just
conventions, not hard-and-fast rules. You can use these conventions in concert with rpm queries.

Table 5-1 Common Naming Conventions on Linux

Convention Usually indicates

Starts with g GNOME desktop application or a GNU
application, especially GNU C programming tools
and libraries

Starts with j Cross-platform Java application

Starts with k KDE desktop application, Linux kernel package,
or Kerberos security package

Starts with py Python application

Starts with rh Red Hat application, usually for configuring your
system

Starts with tk Graphical Tcl application

Starts with x X Window System graphical desktop application

Ends with wm Window manager for controlling the layout of
windows on the screen

4.1.3.2. Querying with Wildcards
In addition to using other Linux commands, the rpm command supports some search options. You
can pass a wildcard to rpm –qa (but not just rpm –q, you need the –a to look for all packages). For
example:

$ rpm -qa "send*"

sendmail-cf-8.11.6-3

Chapter 4. Using the RPM Database

46

sendmail-8.11.6-3

Note

The quotation marks around "send*" are to prevent the Linux shell from expanding the wildcard
character, *, to try to match a list of file names in the local directory. By passing the command-line
parameter as "send*", the rpm program gets to see the * character. Otherwise, the shell expands the
parameter and the program, rpm in this case, never sees the *.

This command searches for all package names starting with send. You can reverse this with an
exclamation mark. For example:

$ rpm -qa '!send*'

This command works sort of like grep –v and searches for all packages that do not start with send.

There are quite a few other Linux commands you can use in pipelines with the rpm –qa command to
better filter and display the data, such as wc –l to count the number of packages that you query. You
can also use a number of other query options to find out more specialized information from the RPM
database.

Cross Reference

If you aren’t familiar with grep or other Linux commands, pick up a Linux tutorial such as (insert
shameless plug) Teach Yourself Linux by Steve Oualline and Eric Foster-Johnson, available from
Wiley Publishing, Inc.

4.1.4. Finding which packages own files
One of the common problems with package management comes when you want to track a given file
on your system back to the package that “owns” the file (that is, the package that, when installed,
installed the particular file).

The -qf option tells the rpm command to query for all packages that own a particular file. You can also
use the longer option, --file, in place of –f. The basic syntax follows:

rpm -qf filename

For example, the grep command used in previous examples is really a file. (Just about all Linux
commands are a file of some sort, be it a shell script or an executable application.) You can use a few
Linux commands to determine which package provides this handy program.

First, we need the exact path to the file. For Linux commands, you can use the which command, if the
program is in your path. (The grep program must be in your path, or commands with grep will fail.)

Try the following command:

which grep

This command returns the path to grep:

/bin/grep

We can now check which package owns this file with the following command:

rpm -qf /bin/grep

Getting Information on Packages

47

grep-2.4.2-7

You can also use the Linux back-tick operator to perform this check with one command.

rpm -qf `which grep`

grep-2.4.2-7

Production: note use of back-quote, `, above. Don’t change to “smart quotes” please. -Eric

If you use the bash shell, you can use the $(command parameters) syntax in place of the back tick, or
`, characters. For example:

rpm -qf $(which grep)

grep-2.4.2-7

If no package owns a given file, you’ll see output like the following:

rpm -qf mail

file mail is not owned by any package

Often, the package that owns a file does not have an intuitive name. The ssh command, for example,
is owned by the openssh-clients package, as shown following:

rpm -qf `which ssh`

openssh-clients-3.1p1-2

As you can see, the name of a command does not always correspond directly to the name of the
package that provides that command. This is where the rpm –qf command proves very useful.
Otherwise, you would just have to know that OpenSSH is the project responsible for this command.

Symbolic Links

The rpm -qf command follows symbolic links. This was not always true with older versions of the rpm
command, but the modern rpm command can now trace package ownership to files placed in linked
directories.

For example, the directory /usr/lib/X11 is a link to the real directory, /usr/X11R6/lib/X11. You can track
the package ownership of a file in that directory, XKeysymDB, for example, by using the following
command:

rpm -qf /usr/lib/X11/XKeysymDB

XFree86-4.2.0-72

This file, XKeysymDB, really resides in /usr/X11R6/lib/X11.

4.2. Getting Information on Packages
The query options for the rpm command include a whole set of options that return information about
the files that make up a package, the scripts, and other parts of the original package. The following
sections cover these options.

Chapter 4. Using the RPM Database

48

4.2.1. Describing packages
The –i option with an rpm query command tells the rpm command to output descriptive information
about the package. You can also use the longer option, --info, in place of –i. The basic syntax is:

rpm -qi package

Warning

The order of the command-line options is very important. Remember that the rpm command has the
following general syntax:

rpm –MajorOperation –extra_options packages_or_files

The rpm –i command installs packages. The rpm –q command queries packages. The rpm –qi
command outputs the descriptive information on packages. If you make a mistake and place the i in
front of the q, you are telling the rpm command to perform a different operation.

When you run this command, being very careful with the order of the options, you’ll see output like the
following, which describes the tcsh shell package.

rpm -qi tcsh-6.10-6

Name : tcsh Relocations: (not relocateable)

Version : 6.10 Vendor: &FORMAL-RHI;

Release : 6 Build Date: Sun 24 Jun 2001 10:45:29

PM CDT

Install date: Fri 14 Dec 2001 10:45:39 AM CST Build

Host: porky.devel.redhat.com

Group : System Environment/Shells Source RPM: tcsh-6.10-6.src.rpm

Size : 764000 License: distributable

Packager : &FORMAL-RHI; <http://bugzilla.redhat.com/bugzilla>

URL : http://www.primate.wisc.edu/software/csh-tcsh-book/

Summary : An enhanced version of csh, the C shell.

Description :

Tcsh is an enhanced but completely compatible version of csh, the C

shell. Tcsh is a command language interpreter which can be used both

as an interactive login shell and as a shell script command processor.

Tcsh includes a command line editor, programmable word completion,

spelling correction, a history mechanism, job control and a C language

like syntax.

Package groups

49

From this description, you can find out a lot about a package, such as where it comes from. Note how
the description also names the source RPM used to build the package programs.

Cross Reference

The sections on custom queries following in this chapter show how you can query for any information
stored in a package header, including all of the information shown with the rpm –qi command, as well
as any other header tag.

4.2.2. Package groups
RPM packages can be placed into groups, merely arbitrary names for a set of packages. The rpm –qi
command, shown previously, lists the group for a package, if there is one. For the tcsh package shown
in the previous example, the package is System Environment/Shells.

The –g option to the rpm –q command tells the rpm command to list all the packages in a given group.
You can also use the longer option, --group, in place of –g. The basic syntax follows:

rpm –qg group_name

For example:

rpm -qg "System Environment/Shells"

bash-2.05b-5

sh-utils-2.0.12-3

ash-0.3.8-5

tcsh-6.12-2

Note

This group has a space in its name, so you need quotation marks to pass the group name as one
parameter to the rpm command.

4.2.3. Listing the files in a package
The –l (ell) option queries all the files in a package. You can also use the longer option, --list, in place
of –l. The basic syntax is:

rpm –ql package

For example, to query the files in the tcsh package, you’ll see the following:

rpm -ql tcsh

/bin/csh

/bin/tcsh

/usr/share/doc/tcsh-6.10

/usr/share/doc/tcsh-6.10/FAQ

/usr/share/doc/tcsh-6.10/Fixes

Chapter 4. Using the RPM Database

50

/usr/share/doc/tcsh-6.10/NewThings

/usr/share/doc/tcsh-6.10/complete.tcsh

/usr/share/doc/tcsh-6.10/eight-bit.txt

/usr/share/doc/tcsh-6.10/tcsh.html

/usr/share/doc/tcsh-6.10/tcsh.html/header.html

/usr/share/doc/tcsh-6.10/tcsh.html/index.html

/usr/share/doc/tcsh-6.10/tcsh.html/lists.html

/usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man

/usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man2html

/usr/share/doc/tcsh-6.10/tcsh.html/top.html

/usr/share/locale/de/LC_MESSAGES/tcsh

/usr/share/locale/el/LC_MESSAGES/tcsh

/usr/share/locale/es/LC_MESSAGES/tcsh

/usr/share/locale/fr/LC_MESSAGES/tcsh

/usr/share/locale/it/LC_MESSAGES/tcsh

/usr/share/locale/ja/LC_MESSAGES/tcsh

/usr/share/man/man1/tcsh.1.gz

Note

You can pass more than one package name to this option, but it won’t tell you which package owns
which file. Use the --filesbypkg option to list files by package (see the related sidebar).

Listing Files By Package

The --filesbypkg option outputs the files by package, so you can make some sense of a list of files
from more than one package.

For example:

rpm -q --filesbypkg file openssh-clients

file /usr/bin/file

file /usr/share/magic

file /usr/share/magic.mgc

file /usr/share/magic.mime

file /usr/share/man/man1/file.1.gz

file /usr/share/man/man5/magic.5.gz

Listing the files in a package

51

openssh-clients /etc/ssh/ssh_config

openssh-clients /usr/bin/sftp

openssh-clients /usr/bin/slogin

openssh-clients /usr/bin/ssh

openssh-clients /usr/bin/ssh-add

openssh-clients /usr/bin/ssh-agent

openssh-clients /usr/bin/ssh-keyscan

openssh-clients /usr/share/man/man1/sftp.1.gz

openssh-clients /usr/share/man/man1/slogin.1.gz

openssh-clients /usr/share/man/man1/ssh-add.1.gz

openssh-clients /usr/share/man/man1/ssh-agent.1.gz

openssh-clients /usr/share/man/man1/ssh-keyscan.1.gz

openssh-clients /usr/share/man/man1/ssh.1.gz

Use this option without –l, because the –l option will also list the files alone, without any package
name.

The –v (verbose) option can give you more information on the files when used with the various query
options. For example:

rpm -qlv tcsh

lrwxrwxrwx 1 root root 4 Jun 24 2001 /bin/csh -> tcsh

-rwxr-xr-x 1 root root 288604 Jun 24 2001 /bin/tcsh

drwxr-xr-x 2 root root 0 Jun 24 2001 /usr/share/doc/tcsh-6.10

-rw-r--r-- 1 root root 8306 Aug 25 2000 /usr/share/doc/tcsh-6.10/FAQ

-rw-r--r-- 1 root root 64761 Nov 19 2000 /usr/share/doc/tcsh-6.10/Fixes

-rw-r--r-- 1 root root 6518 Oct 2 1998 /usr/share/doc/tcsh-6.10/NewThings

-rw-r--r-- 1 root root 41328 Nov 19 2000 /usr/share/doc/tcsh-6.10/complete.tcsh

-rw-r--r-- 1 root root 4668 Jun 24 2001 /usr/share/doc/tcsh-6.10/eight-bit.txt

drwxr-xr-x 2 root root 0 Jun 24 2001 /usr/share/doc/tcsh-6.10/tcsh.html

-rw-r--r-- 1 root root 124 Jun 24 2001 /usr/share/doc/tcsh-6.10/tcsh.html/header.html

lrwxrwxrwx 1 root root 8 Jun 24 2001 /usr/share/doc/tcsh-6.10/tcsh.html/index.html -> top.html

-rw-r--r-- 1 root root 911 Jun 24 2001 /usr/share/doc/tcsh-6.10/tcsh.html/lists.html

-rw-r--r-- 1 root root 0 Jun 24 2001 /usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man

Chapter 4. Using the RPM Database

52

-rw-r--r-- 1 root root 22542 Jun 24 2001 /usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man2html

-rw-r--r-- 1 root root 693 Jun 24 2001 /usr/share/doc/tcsh-6.10/tcsh.html/top.html

-rw-r--r-- 1 root root 45861 Jun 24 2001 /usr/share/locale/de/LC_MESSAGES/tcsh

-rw-r--r-- 1 root root 47566 Jun 24 2001 /usr/share/locale/el/LC_MESSAGES/tcsh

-rw-r--r-- 1 root root 47413 Jun 24 2001 /usr/share/locale/es/LC_MESSAGES/tcsh

-rw-r--r-- 1 root root 47156 Jun 24 2001 /usr/share/locale/fr/LC_MESSAGES/tcsh

-rw-r--r-- 1 root root 48264 Jun 24 2001 /usr/share/locale/it/LC_MESSAGES/tcsh

-rw-r--r-- 1 root root 18682 Jun 24 2001 /usr/share/locale/ja/LC_MESSAGES/tcsh

-rw-r--r-- 1 root root 62399 Jun 24 2001 /usr/share/man/man1/tcsh.1.gz

This information is the same as a long listing on the files.

As you can see, the –l option results in quite a lot of output. In some cases, though, you aren’t
interested in documentation and other miscellaneous files in the package. It’s the commands and
libraries that cause the most package-related problems. To help with this, you can use a series of rpm
options to list only certain types of files.

4.2.4. Listing the configuration files for a package
The –c option tells the rpm –q command to list the configuration files for a package. You can also use
the longer option, --configfiles, in place of –c. The basic syntax is:

rpm –qc package_name

For example:

rpm -qc bash

/etc/skel/.bash_logout

/etc/skel/.bash_profile

/etc/skel/.bashrc

This command lists the configuration files for the bash package.

Some packages don’t have configuration files, as shown following:

rpm -qc python

#

In this case, the rpm command provides no output. Other packages have a lot of configuration files,
such as the sendmail mail transfer agent, as shown following:

rpm -qc sendmail

/etc/aliases

/etc/mail/Makefile

Listing the documentation files for a package

53

/etc/mail/access

/etc/mail/domaintable

/etc/mail/helpfile

/etc/mail/local-host-names

/etc/mail/mailertable

/etc/mail/sendmail.mc

/etc/mail/statistics

/etc/mail/trusted-users

/etc/mail/virtusertable

/etc/rc.d/init.d/sendmail

/etc/sendmail.cf

/etc/sysconfig/sendmail

/usr/lib/sasl/Sendmail.conf

As with the –l option, the –v option provides more information on each file, as shown following:

#rpm -qcv bash

-rw-r--r-- 1 root root 24 Jul 9 2001 /etc/skel/.bash_logout

-rw-r--r-- 1 root root 191 Jul 9 2001 /etc/skel/.bash_profile

-rw-r--r-- 1 root root 124 Jul 9 2001 /etc/skel/.bashrc

4.2.5. Listing the documentation files for a package
Similarly to the –c option, the –d option tells the rpm –q command to list just the documentation files
for a package. The basic syntax is:

rpm –qd package_name

For example:

rpm -qd tcsh

/usr/share/doc/tcsh-6.10/FAQ

/usr/share/doc/tcsh-6.10/Fixes

/usr/share/doc/tcsh-6.10/NewThings

/usr/share/doc/tcsh-6.10/complete.tcsh

/usr/share/doc/tcsh-6.10/eight-bit.txt

/usr/share/doc/tcsh-6.10/tcsh.html/header.html

Chapter 4. Using the RPM Database

54

/usr/share/doc/tcsh-6.10/tcsh.html/index.html

/usr/share/doc/tcsh-6.10/tcsh.html/lists.html

/usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man

/usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man2html

/usr/share/doc/tcsh-6.10/tcsh.html/top.html

/usr/share/man/man1/tcsh.1.gz

Note

You can add the –v option to all of the file-listing options to get more information.

You can also use the longer option, --docfiles, in place of –d.

4.2.6. Listing the state of the files in a package
The –s option to the rpm –q command lists the state of each file in a package. The basic syntax
follows.

rpm –qs package_name

For example:

rpm -qs tcsh

normal /bin/csh

normal /bin/tcsh

normal /usr/share/doc/tcsh-6.10

normal /usr/share/doc/tcsh-6.10/FAQ

normal /usr/share/doc/tcsh-6.10/Fixes

normal /usr/share/doc/tcsh-6.10/NewThings

normal /usr/share/doc/tcsh-6.10/complete.tcsh

normal /usr/share/doc/tcsh-6.10/eight-bit.txt

normal /usr/share/doc/tcsh-6.10/tcsh.html

normal /usr/share/doc/tcsh-6.10/tcsh.html/header.html

normal /usr/share/doc/tcsh-6.10/tcsh.html/index.html

normal /usr/share/doc/tcsh-6.10/tcsh.html/lists.html

normal /usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man

normal /usr/share/doc/tcsh-6.10/tcsh.html/tcsh.man2html

normal /usr/share/doc/tcsh-6.10/tcsh.html/top.html

Listing the scripts in a package

55

not installed /usr/share/locale/de/LC_MESSAGES/tcsh

not installed /usr/share/locale/el/LC_MESSAGES/tcsh

not installed /usr/share/locale/es/LC_MESSAGES/tcsh

not installed /usr/share/locale/fr/LC_MESSAGES/tcsh

not installed /usr/share/locale/it/LC_MESSAGES/tcsh

not installed /usr/share/locale/ja/LC_MESSAGES/tcsh

normal /usr/share/man/man1/tcsh.1.gz

You can also use the longer option, --state, in place of –s.

You can combine the –s option with other file filters, such as –d, for listing only the documentation files
for a package.

Table 5-2 lists the states that the rpm command supports.

Table 5-2 RPM File States

State Usage

normal The file has been installed.

not installed The file from the package is not installed.

replaced The file has been replaced.

Sometimes files in a package may have been skipped during installation with options such as --
excludedocs. This can lead to non-normal states. You may have also modified files installed from a
given package.

Cross Reference

See Chapter 3, Using RPM for more on installing RPMs.

4.2.7. Listing the scripts in a package
RPM packages can have preinstallation, postinstallation, preuninstallation, and postuninstallation
scripts. These are scripts that the rpm command will execute before and after installing a package, as
well as before and after removing the package. The --scripts option to the rpm –q command lists the
scripts associated with a package. The basic syntax follows:

rpm -q --scripts package_name

For example:

rpm -q --scripts tcsh

postinstall scriptlet (through /bin/sh):

if [! -f /etc/shells]; then

echo "/bin/tcsh" >> /etc/shells

echo "/bin/csh" >> /etc/shells

Chapter 4. Using the RPM Database

56

else

grep '^/bin/tcsh$' /etc/shells > /dev/null || echo "/bin/tcsh" >> /etc/shell

s

grep '^/bin/csh$' /etc/shells > /dev/null || echo "/bin/csh" >> /etc/shells

fi

postuninstall scriptlet (through /bin/sh):

if [! -x /bin/tcsh]; then

grep -v '^/bin/tcsh$' /etc/shells | grep -v '^/bin/csh$'> /etc/shells.rpm

mv /etc/shells.rpm /etc/shells

fi

PRODUCTION: NOTE THE “fi” on a line by itself at the end of this listing. Thanks, -Eric

The simple scripts shown here add an entry to the /etc/shells file and clean up the entry when
uninstalled.

Cross Reference

Cleaning up any changes your package makes on uninstallation is a very good idea. See the chapters
in Part II, Creating RPMs, for details on making your own well-behaved packages.

Other packages have more complex scripts, as shown following:

rpm -q --scripts sendmail

preinstall scriptlet (through /bin/sh):

/usr/sbin/useradd -u 47 -d /var/spool/mqueue -r -s /dev/null mailnull >/dev/null

2>&1 || :

postinstall scriptlet (through /bin/sh):

#

Convert old format to new

#

if [-f /etc/mail/deny] ; then

cat /etc/mail/deny | \

awk 'BEGIN{ print "# Entries from obsoleted /etc/mail/deny"} \

{print $1" REJECT"}' >> /etc/mail/access

cp /etc/mail/deny /etc/mail/deny.rpmorig

fi

Listing the scripts in a package

57

for oldfile in relay_allow ip_allow name_allow ; do

if [-f /etc/mail/$oldfile] ; then

cat /etc/mail/$oldfile | \

awk "BEGIN { print \"# Entries from obsoleted /etc/mail/$oldfile

\" ;} \

{ print \$1\" RELAY\" }" >> /etc/mail/access

cp /etc/mail/$oldfile /etc/mail/$oldfile.rpmorig

fi

done

#

Oops, these files moved

#

if [-f /etc/sendmail.cw] ; then

cat /etc/sendmail.cw | \

awk 'BEGIN { print "# Entries from obsoleted /etc/sendmail.cw" ;} \

{ print $1 }' >> /etc/mail/local-host-names

cp /etc/sendmail.cw /etc/sendmail.cw.rpmorig

fi

#

Rebuild maps (next reboot will rebuild also)

#

{ /usr/bin/newaliases

for map in virtusertable access domaintable mailertable

do

if [-f /etc/mail/${map}] ; then

/usr/bin/makemap hash /etc/mail/${map} < /etc/mail/${map}

sleep 1

fi

done

} > /dev/null 2>&1

Chapter 4. Using the RPM Database

58

/sbin/chkconfig --add sendmail

preuninstall scriptlet (through /bin/sh):

if [$1 = 0]; then

/etc/rc.d/init.d/sendmail stop >/dev/null 2>&1

/sbin/chkconfig --del sendmail

fi

postuninstall scriptlet (through /bin/sh):

if ["$1" -ge "1"]; then

/etc/rc.d/init.d/sendmail condrestart >/dev/null 2>&1

fi

exit 0

In this case, the main script is the post-install script, which tries to convert old-format data into the new
format, thereby helping users upgrade to the newer release.

4.2.8. Listing what has changed
The --changelog option lists what has changed, as described in a file that logs changes, from previous
versions of a given package. The change log is just a convention, so not all packages will sport this
nifty feature. In addition, the change log for many packages documents the changes in the RPM
packaging, not the changes in the underlying application. If a change log is available, however, this
can prove a very good way to help determine whether you want to upgrade to a new version of a
package.

For example, a network server application may have been updated to fix some security problems. In
that case, you likely want to upgrade. Other changes may not affect your site, leading you to decide
not to upgrade.

The basic format of the command is:

rpm –q --changelog package_name

For example, the following shows the beginning of the log-change log for the bash package, with
names and e-mail addresses changed to protect the innocent:

rpm -q --changelog bash

* Fri Aug 23 2002 Bob Marley <bob@marley.com.>

- re-bzip the docs, something was corrupted

* Thu Aug 22 2002 Peter Tosh <peter@tosh.com> 2.05b-4

- Fix history substitution modifiers in UTF-8 (bug #70294, bug #71186).

Combining queries

59

- Fix ADVANCE_CHAR at end of string (bug #70819).

- docs: CWRU/POSIX.NOTES no longer exists, but ship POSIX.

* Wed Aug 07 2002 Jimmy Cliff <jimmy@cliff.com> 2.05b-3

- Fixed out of memory problem with readline.

* Tue Jul 23 2002 Jimmy Cliff <jimmy@cliff.com> 2.05b-2

- Added symlink for sh.1 in man1 section so that man sh works (#44039).

4.2.9. Combining queries
The rpm command is very flexible in allowing you to combine queries. Just start the command with
rpm –q and add the various options either on their own, such as –q with –s and –f, or together, such as
–qsf.

The following sections show a few handy combinations of the options you can use for real-world
package-management tasks.

4.2.9.1. Listing Package Description and Documentation Files
To find information on a package and where it is documented, use the –qdi option to the rpm
command (a combination of the –q, –d, and –i options):

rpm -qdi grep

Name : grep Relocations: /usr

Version : 2.5.1 Vendor: Red Hat,

Inc.

Release : 4 Build Date: Sat 20 Jul

2002 01:08:48 AM CDT

Install date: Sat 05 Oct 2002 12:21:58 PM CDT Build

Host: stripples.devel.redhat.com

Group : Applications/Text Source RPM: grep-2.5.1-

4.src.rpm

Size : 475770 License: GPL

Signature : DSA/SHA1, Tue 03 Sep 2002 04:17:47 PM CDT, Key ID

219180cddb42a60ePackager : &FORMAL-RHI;

<http://bugzilla.redhat.com/bugzilla>

Chapter 4. Using the RPM Database

60

Summary : The GNU versions of grep pattern matching utilities.

Description :

The GNU versions of commonly used grep utilities. Grep searches

through textual input for lines which contain a match to a specified

pattern and then prints the matching lines. GNU's grep utilities

include grep, egrep, and fgrep.

You should install grep on your system, because it is a very useful

utility for searching text.

/usr/share/doc/grep-2.5.1/ABOUT-NLS

/usr/share/doc/grep-2.5.1/AUTHORS

/usr/share/doc/grep-2.5.1/ChangeLog

/usr/share/doc/grep-2.5.1/NEWS

/usr/share/doc/grep-2.5.1/README

/usr/share/doc/grep-2.5.1/THANKS

/usr/share/doc/grep-2.5.1/TODO

/usr/share/info/grep.info-1.gz

/usr/share/info/grep.info-2.gz

/usr/share/info/grep.info-3.gz

/usr/share/info/grep.info.gz

/usr/share/man/man1/egrep.1.gz

/usr/share/man/man1/fgrep.1.gz

/usr/share/man/man1/grep.1.gz

It's often hard to track down the documentation for a given package. Some packages use Unix manual
pages; others use info files, and still others provide HTML for other formatted manuals. Some have no
real documentation at all.

4.2.9.2. Listing the State of Configuration Files
To find the state of all the configuration files for a given Linux command, use a command with the –
qcsf option with the name of the file, as shown here, or the -qcs option with the name of a package.

For example:

rpm -qcsf /bin/bash

normal /etc/skel/.bash_logout

Creating custom queries

61

normal /etc/skel/.bash_profile

normal /etc/skel/.bashrc

4.2.9.3. Listing the Most Recently Installed Packages
To list the most recently installed packages, use the following command with the --last option. This is
very useful if you recently installed or upgraded a number of packages and something unexpected
happens. If you cannot remember the package names, you can use the --last option to list out
packages in reverse order of installation.

You can pipe the output of a query to the head command to show only the last ten packages that were
installed or upgraded, as shown following:

rpm -qa --last | head

comps-8.0-0.20020910 Sat 05 Oct 2002 01:17:30 PM CDT

tkinter-2.2.1-17 Sat 05 Oct 2002 01:16:58 PM CDT

tix-8.2.0b1-74 Sat 05 Oct 2002 01:16:52 PM CDT

tclx-8.3-74 Sat 05 Oct 2002 01:16:44 PM CDT

python-tools-2.2.1-17 Sat 05 Oct 2002 01:16:41 PM CDT

mx-2.0.3-6 Sat 05 Oct 2002 01:16:34 PM CDT

libxslt-python-1.0.19-1 Sat 05 Oct 2002 01:16:31 PM CDT

librpm404-devel-4.0.4-8x.27 Sat 05 Oct 2002 01:16:27 PM CDT

itcl-3.2-74 Sat 05 Oct 2002 01:16:12 PM CDT

gnumeric-1.0.9-2 Sat 05 Oct 2002 01:15:46 PM CDT

You can pass options to the head command to show more or fewer than ten lines. In general, starting
with the last ten packages can help you track down something you installed the day before.

4.2.10. Creating custom queries
The --qf or --queryformat option allows you to create custom queries with the rpm command, although
in a rather difficult manner. You need to pass a query format string, the syntax of which originates with
the C printf function and requires precision.

The basic syntax of the query format is %{tag_name}. (The percent sign is about the only part that
comes from the C printf function.) You can combine tag names to display more than one item per
package. You can also add formatting options following C language conventions.

For example, to list all package names, use a command like the following:

rpm -qa --qf "%{NAME}"

redhat-menusglibccracklibgdbmgmplibacllibjpeglincpcreshadow-

utilslibtermcapfreetypeinfofileutilspsmiscntpmountcracklib-dictskrb5-libscyrus-

Chapter 4. Using the RPM Database

62

saslusermodeXftlibpnglibxmllibbonobopythonpygtk2pyxf86configredhat-config-

usersredhat-config-keyboardrpm404-pythongnome-vfs2libgnomeuiashbind-utilscyrus-

sasl-plaindos2unixethtoolfingergroffautofskbdconfiglesslibtool-

libslockdevmailcapMAKEDEVmouseconfignetpbmntsysvORBitpartedppppsutilsrdaterhnlibrp

mrshsetuptoolstatserialtarlilopciutilstimeconfigunzipkernel-pcmcia-

csanacronXFree86

This command used the simplest format, which is just the value of the tag in the package headers,
in this case the package names. Because we used no other formatting, this command outputs all the
package names smashed together. To deal with this problem in the output, you can place a \n, the
C language convention for a newline character, at the end of the format string. This fixes the output
considerably.

For example (showing just the first few entries):

rpm -qa --qf "%{NAME}\n"

redhat-menus

glibc

cracklib

gdbm

gmp

libacl

libjpeg

linc

pcre

shadow-utils

libtermcap

freetype

info

fileutils

psmisc

ntp

mount

cracklib-dicts

krb5-libs

Creating custom queries

63

cyrus-sasl

usermode

Xft

This command provides a custom query that is essentially the same as the rpm -qa command. You’ll
likely not use this command in favor of the simpler rpm option, but you can use this example as a
guide for creating your own custom queries.

Cross Reference

A great many of the command-line options to the rpm command are defined as popt aliases. These
popt aliases define the rpm command-line options in terms of longer query format strings. See
Chapter 20, Customizing RPM Behavior for more information on popt.

You can add items to the query string and use C language conventions for formatting and controlling
the amount of space provided for each item output.

For example, the following command prints the name and platform for all packages, showing the first
few entries, formatted with 20 characters for each item:

rpm -qa --qf "%-20{NAME} %-20{PLATFORM}\n"

redhat-menus noarch-redhat-linux-gnu

glibc i686-redhat-linux-gnu

cracklib i386-redhat-linux

gdbm i386-redhat-linux-gnu

gmp i386-redhat-linux-gnu

libacl i386-redhat-linux-gnu

libjpeg i386-redhat-linux

linc i386-redhat-linux-gnu

pcre i386-redhat-linux

shadow-utils i386-redhat-linux-gnu

libtermcap i386-redhat-linux

freetype i386-redhat-linux-gnu

info i386-redhat-linux-gnu

fileutils i386-redhat-linux-gnu

psmisc i386-redhat-linux

ntp i386-redhat-linux-gnu

mount i386-redhat-linux-gnu

Chapter 4. Using the RPM Database

64

cracklib-dicts i386-redhat-linux

krb5-libs i386-redhat-linux-gnu

cyrus-sasl i386-redhat-linux-gnu

usermode i386-redhat-linux-gnu

Xft i386-redhat-linux-gnu

4.2.10.1. Working With Query Format Tags
To build queries with the --queryformat option, you need to know what tags you can use. To list the
names of the available query format tags, use the --querytags option, which returns a large set of tags,
truncated here for space:

rpm --querytags

NAME

VERSION

RELEASE

SUMMARY

DESCRIPTION

BUILDTIME

Each of these tags also has a version with a RPMTAG_ prefix, such as RPMTAG_NAME. You can use
this tags with or without the RPMTAG_ prefix. For example:

$ rpm -q --qf "%{RPMTAG_NAME}\n" sendmail

sendmail

Note how this command uses the –q option to query for one package, instead of –qa to query for all
packages. You can use query formats with any of the rpm queries.

The next sections cover the available tags based on the type of the information stored in the tag.

4.2.10.2. Querying for Package Information
Many of the query format tags refer to package-information data stored in the RPM header, introduced
in Chapter 2, RPM Overview . Table 5-3 lists the package-information tags.

Table 5-3 Package-information query tags

Tag Holds

NAME Package name

VERSION Version number

RELEASE Release number

SUMMARY One-line summary of the package contents

Creating custom queries

65

DESCRIPTION Descriptive text about the package

BUILDTIME Time package was built

BUILDHOST Host package was built on

SIZE Size of all the regular files in the payload

LICENSE License package was released under

GROUP Descriptive group or category name for the
package

OS Operating system package was built for

ARCH Architecture, such as i386

SOURCERPM The associated source RPM

CHANGELOGTIME Array of changelog times

CHANGELOGNAME Array of changelog names

CHANGELOGTEXT Array of changelog text entries

PREIN Pre-install script

POSTIN Post-install script

PREUN Pre-uninstall script

POSTUN Post uninstall script

PLATFORM Platform

All of these tags, except for the CHANGELOGTIME, CHANGELOGTEXT and CHANGELOGNAME
tags, are single-value tags. You can query for these tag values using

4.2.10.3. Formatting Arrays
Many of the header entries are arrays, so the header tags can hold more than one item. For example,
RPM packages can have more than one file in the payload.

To specify a format for each item in an array, use square brackets. For example:

$ rpm -q --queryformat "[%-50{FILENAMES} %{FILESIZES}\n]" sendmail

/etc/aliases 1295

/etc/aliases.db 12288

/etc/mail 4096

/etc/mail/Makefile 748

/etc/mail/access 331

/etc/mail/access.db 12288

/etc/mail/domaintable 0

/etc/mail/domaintable.db 12288

/etc/mail/helpfile 5588

/etc/mail/local-host-names 64

Chapter 4. Using the RPM Database

66

This example lists the files and file sizes within a package, with the listing of files truncated for size.

If you want to mix array tags with non-array tags, you can use an equals sign, =, in front of the tag
name to specify that the given tag should be repeated for each item in the array. For example:

$ rpm -q --queryformat "[%-15{=NAME} %-50{FILENAMES}\n]" sendmail jikes

sendmail /usr/lib/sendmail

sendmail /usr/sbin/mailstats

sendmail /usr/sbin/makemap

sendmail /usr/sbin/praliases

sendmail /usr/sbin/sendmail.sendmail

sendmail /usr/sbin/smrsh

sendmail /usr/share/man/man1/mailq.sendmail.1.gz

sendmail /usr/share/man/man1/newaliases.sendmail.1.gz

sendmail /usr/share/man/man5/aliases.sendmail.5.gz

sendmail /usr/share/man/man8/mailstats.8.gz

sendmail /usr/share/man/man8/makemap.8.gz

sendmail /usr/share/man/man8/praliases.8.gz

sendmail /usr/share/man/man8/rmail.8.gz

sendmail /usr/share/man/man8/sendmail.8.gz

sendmail /usr/share/man/man8/smrsh.8.gz

sendmail /var/spool/clientmqueue

sendmail /var/spool/mqueue

jikes /usr/bin/jikes

jikes /usr/doc/jikes-1.18/license.htm

jikes /usr/man/man1/jikes.1.gz

This example, also truncated for size, lists the package name along with the file name for the files
contained in these two packages.

4.2.10.4. Special Formatting
Some of the tags within an RPM package header contain special binary information that usually
makes no sense when printed out. To help with these header tags, you can use special RPM
formatting options, using a syntax like the following:

%{tag:special_format}

Creating custom queries

67

For example, to print the INSTALLTIME tag, use %{INSTALLTIME:date}, which specifies to print the
INSTALLTIME tag in date format. For example:

$ rpm -q --qf "%{NAME}-%{VERSION}-%{RELEASE} %{INSTALLTIME:date}\n" jikes

jikes-1.18-1 Fri 06 Dec 2002 09:19:30 PM CST

This example prints the NAME-VERSION-RELEASE of the package, along with the INSTALLTIME in
date format.

Most tags in a header are optional. You can print the value of these tags, but you may get nothing.
To help deal with this, you can use a conditional operator based loosely on the C language ternary
operator. The basic syntax is:

%|tag?{print_if_present}:{print_if_absent}|

With the normal %{tag} syntax, this conditional syntax gets complicated really fast. You need to break
the elements down. For example:

$ rpm -q --qf "%{NAME} %|EPOCH?{%{EPOCH}}:{(no Epoch)}|\n" perl

perl 1

If the package has a value for the EPOCH tag, you will see output as shown in this example. Most
packages do not have an EPOCH defined, in which case, you will see output like the following:

RPM files likely hold packages that are not installed. If you query one of these packages, you will get
the alternative text, as shown following:

$ rpm -q --qf "%{NAME} %|EPOCH?{%{EPOCH}}:{(no Epoch)}|\n" sendmail

sendmail (no Epoch)

Cross Reference

See the "Getting Information on Package Files" section in this chapter for more on querying RPM
package files.

Other special-formatting options are described in the following sections on the dependency and file
information tags.

4.2.10.5. Querying for Package Dependencies
A number of tags provide package dependency information. Each of these tags comes in triples,
which are formatted similarly. For example, for the capabilities a package requires, you have the
REQUIRENAME, REQUIREVERSION, and REQUIREFLAGS tags.

The REQUIRENAME tag holds an array of required capability names. The REQUIREVERSION tag
holds an array of the versions of the required capabilities. The REQUIREFLAGS tag ties the two
together with a set of bit flags that specify whether the requirement is for a version less than the given
number, equal to the given number, greater than or equal to the given number, and so on.

Table 5-4 lists the dependency tags.

Table 5-4 Dependency query tags

Chapter 4. Using the RPM Database

68

Tag Holds

CONFLICTFLAGS Array of flags for the capabilities this package
conflicts

CONFLICTNAME Array of capabilities that this package conflicts

CONFLICTVERSION Array of version numbers that this package
conflicts

REQUIREFLAGS Array of flags for the capabilities this package
requires

REQUIRENAME Array of capabilities that this package requires

REQUIREVERSION Array of version numbers that this package
requires

OBSOLETENAME Array of capabilities that this package obsoletes

OBSOLETEFLAGS Array of flags for the capabilities this package
obsoletes

OBSOLETEVERSION Array of version numbers that this package
obsoletes

PROVIDENAME Array of capabilities that this package provides

PROVIDEFLAGS Array of flags for the capabilities this package
provides

PROVIDEVERSION Array of version numbers that this package
provides

Each of these tags is an array. The PROVIDENAME, PROVIDEVERSION, and PROVIDEFLAGS tags
work similarly for the capabilities this package provides. The CONFLICTNAME, CONFLICTVERSION,
and CONFLICTFLAGS tags specify the conflicts, and, the OBSOLETENAME, OBSOLETEVERSION,
and OBSOLETEFLAGS tags specify the obsolete dependencies.

The depflags special-formatting option prints out the flag tags, such as REQUIREFLAGS, in human-
readable format. For example, the following command lists the requirements for a package:

$ rpm -q --qf \

"[%{REQUIRENAME} %{REQUIREFLAGS:depflags} %{REQUIREVERSION}\n]" sendmail

rpmlib(VersionedDependencies) <= 3.0.3-1

chkconfig >= 1.3

/usr/sbin/useradd

/bin/mktemp

fileutils

gawk

sed

sh-utils

procmail

Creating custom queries

69

bash >= 2.0

/bin/sh

rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(CompressedFileNames) <= 3.0.4-1

For those requirements that have specific version numbers, this command prints out the version
number along with the operator, such as >= for a version greater than or equal to the given number.

Note that for many of the requirements, there is no specific version information.

Note

In addition to normal capabilities, most packages will have some RPM-related requirements as well,
which specify any required RPM versions, for example, rpmlib(CompressedFileNames).

4.2.10.6. Querying for File Information
The file-information tags hold data on the files within the package payload, that is, the files the rpm
command installs when you install the package. These tags are arrays, with one value per file.

Table 5-5 lists the file-information tags.

Table 5-5 File-information query tags

Tag Holds

OLDFILENAMES Array of full file names, used in older packages

FILESIZES Array of sizes for each file

FILEMODES Array of permissions for each file

FILERDEVS Array of rdev values for each file

FILEMTIMES Array of modified times for each file

FILEMD5S MD5 checksum for each file

FILELINKTOS Array of link information for each file

FILEFLAGS Array of flags for each file

FILEUSERNAME Array of user names for the file owners

FILEGROUPNAME Array of group names for the file owners

FILEDEVICES Array of devices for each file

FILEINODES Array of inodes for each file

FILELANGS Array of language flags for each file

DIRINDEXES Array of values that matches the DIRNAMES
with the BASENBAMES

BASENAMES Array of file base names

DIRNAMES Array of directories that matches up with
BASENAMES

The OLDFILENAMES tag is used when the files are not compressed, when the REQUIRENAME tag
does not indicate rpmlib(CompressedFileNames).

Chapter 4. Using the RPM Database

70

The FILESIZES tag specifies the size of each file in the payload, while the FILEMODES tag specifies
the file modes (permissions) and the FILEMTIMES tag holds the last modification time for each file.

The BASENAMES tag holds an array of the base file names for the files in the payload. The
DIRNAMES tag holds an array of the directories for the files. The DIRINDEXES tag contains an index
into the DIRNAMES for the directory. Each RPM must have either OLDFILENAMES or the triple of
BASENAMES, DIRNAMES, and DIRINDEXES, but not both.

When listing file information, use the square bracket array syntax with your query formats. You can use
the perms special formatting option for the file modes. For example:

$ rpm -q --qf "[%-15{=NAME} %-36{FILENAMES} %{FILEMODES:perms}\n]" jikes

jikes /usr/bin/jikes -rwxr-xr-x

jikes /usr/doc/jikes-1.18/license.htm -rw-r--r--

jikes /usr/man/man1/jikes.1.gz -rw-r--r--

4.2.10.7. Other Query Format Tags
In addition to all these tags, there are a number of other miscellaneous tags, many of which are listed
in Table 5-6.

Table 5-6 Other query tags

Tag Holds

ARCHIVESIZE Uncompressed size of the payload section

COOKIE Holds an opaque string

RPMVERSION Holds the version of the RPM tool used to create
the package

OPTFLAGS Compiler optimization flags used to build the
package

PAYLOADFORMAT Must be cpio for LSB-compliant packages

PAYLOADCOMPRESSOR Must be gzip for LSB-compliant packages

PAYLOADFLAGS Must be 9 for LSB-compliant packages

RHNPLATFORM Holds an opaque string

FILEVERIFYFLAGS Bitmask that specifies which tests to perform to
verify the files after an install

For example, you can list the version of RPM that created a package with a command like the
following:

$ rpm -qp --qf "%{name} - rpm %{rpmversion}\n" *.rpm

acroread - rpm 2.5.5

canvas - rpm 3.0.3

jikes - rpm 4.0.2

SDL - rpm 2.5.1

Other queries

71

ted - rpm 2.5.5

Cross Reference

See Chapter 24, RPM Package File Structure for a listing of all the tags in an RPM file.

4.2.11. Other queries
If what you’ve seen so far isn’t enough, the rpm command supports a number of extra queries, mostly
of use to developers at Red Hat.

Table 5-7 summarizes these extra queries.

Table 5-7 Extra Queries

Option Meaning

--dump Dumps out extra information on files

--fileid md5_id Queries for the package with the given MD5
digest

--hdrid sha1_header_id Queries for the package with the given header
identifier number, in SHA1 format

--last Reorders the output of the rpm command to
show the most recently-installed packages first

--pkgid md5_id Queries for the package with the given MD5
package ID

--querybynumber number Queries for the given entry, by number, in the
RPM database

--tid transaction_id Queries for the package or packages with the
given transaction ID

4.3. Getting Information on Package Files
In addition to querying the RPM database about installed packages, the rpm command provides
the handy ability to extract information from RPM files. This is very useful for determining whether
you want to install a given package or not. It also helps with the simple task of figuring out what a
package’s purpose, especially if names like kudzu, anaconda, or dia don’t immediately tell you what
the corresponding packages provide.

The –p option tells the rpm command to provide information on the given package file. The basic
syntax is:

rpm –qp option_query_options filename.rpm

You can use the longer option, --package, in place of –p. You can also pass more than one RPM file to
the command.

The query information options shown previously for installed packages also work for RPM files. For
example, to list the configuration files for a package, combine the -q, -p, and -c options with the name
of a package file, as shown following:

rpm -qpc telnet-server-0.17-23.i386.rpm

Chapter 4. Using the RPM Database

72

/etc/xinetd.d/telnet

To list all the files in an RPM package, combine the -q, -p, and -l options:

rpm -qpl telnet-server-0.17-23.i386.rpm

/etc/xinetd.d/telnet

/usr/sbin/in.telnetd

/usr/share/man/man5/issue.net.5.gz

/usr/share/man/man8/in.telnetd.8.gz

/usr/share/man/man8/telnetd.8.gz

Querying Package Files Remotely

As shown in Chapter 3, Using RPM , you can access RPM package files over a network using FTP
or HTTP connections. To query remote files, use the same rules as shown in Chapter 3, Using RPM ,
with the following syntax:

rpm -qp ftp://username:password@hostname:port/path/to/rpm/file

rpm -qp ftp://username@hostname:port/path/to/rpm/file

rpm -qp ftp://hostname:port/path/to/rpm/file

rpm -qp http://hostname:port/path/to/rpm/file

If your system resides behind a firewall with a proxy server, use the options in the following table to
name the proxy. Note that these proxy options only work with the TIS Firewall toolkit.

Network Proxy Option Meaning

--ftpproxy proxy_hostname Names the proxy system

--ftpport proxy_port_number Network port number on the proxy system

--httpproxy proxy_hostname Names the proxy system

--httpport proxy_port_number Network port number on the proxy system

4.4. Verifying Installed RPM Packages
You can do a lot more than just query packages in the RPM database. You can ask the rpm command
to verify packages with the -V (or --verify) option.

The basic syntax is:

rpm -V verify_options package_name

For example:

rpm -V telnet

#

Verifying your entire system

73

If everything checks out, you'll get no response. The rpm command reports problems only. For
example, if you have an installation of the telnet-server package that is missing some files, the rpm -V
command will let you know, as shown following:

rpm -V telnet-server

missing c /etc/xinetd.d/telnet

missing /usr/sbin/in.telnetd

missing d /usr/share/man/man5/issue.net.5.gz

In this example, the c and d stand for configuration and documentation files, respectively.

Note

The rpm -V command will also report missing dependencies.

4.4.1. Verifying your entire system
To verify your entire system, use the -a option.

For example:

rpm -Va

SM5....T c /usr/share/info/dir

.......T c /etc/krb5.conf

.......T /usr/share/pixmaps/gnome-default-dlg.png

.......T /usr/share/pixmaps/gnome-error.png

.......T /usr/share/pixmaps/gnome-info.png

.......T /usr/share/pixmaps/gnome-question.png

.......T /usr/share/pixmaps/gnome-warning.png

S.5....T c /etc/sysconfig/pcmcia

.....U.. /dev/winradio0

Each line that the rpm command outputs indicates a problem with the given file. The rpm command
uses letter codes to show the type of the problem. Table 5-8 lists the letter codes with their meanings.

Table 5-8 RPM verify output codes

Code Meaning

S File size differs.

M File mode differs.

5 The MD5 checksum differs.

D The major and minor version numbers differ on a
device file.

Chapter 4. Using the RPM Database

74

L A mismatch occurs in a link.

U The file ownership differs.

G The file group owner differs.

T The file time (mtime) differs.

4.4.2. Controlling the verification
You can use a number of options to tell the verification command specifically what to check for or not
check for. Table 5-9 lists these options.

Table 5-9 Controlling the verification

Option Usage

--nodeps Don't verify dependencies.

--nodigest Don't verify the package or header digests.

--nofiles Don't verify the file attributes.

--noscripts Don't try to verify the scripts.

--nosignature Don't verify the package or header signatures.

--nolinkto Don't verify the link file attribute.

--nomd5 Don't verify the MD5 digest file attribute.

--nosize Don't verify the file size attribute.

--nouser Don't verify the file owner attribute.

--nogroup Don't verify the file group owner attribute.

--nomtime Don't verify the file mtime attribute.

--nomode Don't verify the file mode attribute.

--nordev Don't verify the file rdev attribute.

-a Verify all packages in a given group.

-g group Verify all packages in a given group.

-p file Verify the given RPM file.

Cross Reference

Chapter 11, Controlling the Build with rpmbuild covers another option for verifying a package file, the
rpm –K command.

The --nofiles option is often used with the –Va option to verify the whole system but skip tests of
file attributes. This command is used to often it has become an idiom for RPM usage, especially for
debugging RPM problems. Run a command like the following:

$ rpm -Va --nofiles

4.5. Working With the RPM Database
As mentioned in Chapter 2, RPM Overview , the RPM database is stored in /var/lib/rpm. The files in
that directory are Berkeley DB files, as shown by the file command:

file /var/lib/rpm/*

Working With the RPM Database

75

/var/lib/rpm/Basenames: Berkeley DB (Hash, version 7, native byte-order)

/var/lib/rpm/Conflictname: Berkeley DB (Hash, version 7, native byte-order)

/var/lib/rpm/__db.001: data

/var/lib/rpm/__db.002: X11 SNF font data, LSB first

/var/lib/rpm/__db.003: X11 SNF font data, LSB first

/var/lib/rpm/Dirnames: Berkeley DB (Btree, version 8, native byte-order)

/var/lib/rpm/Filemd5s: Berkeley DB (Btree, version 8, native byte-order)

/var/lib/rpm/Group: Berkeley DB (Hash, version 7, native byte-order)

/var/lib/rpm/Installtid: Berkeley DB (Btree, version 8, native byte-order)

/var/lib/rpm/Name: Berkeley DB (Hash, version 7, native byte-order)

/var/lib/rpm/Packages: Berkeley DB (Hash, version 7, native byte-order)

/var/lib/rpm/Providename: Berkeley DB (Hash, version 7, native byte-order)

/var/lib/rpm/Provideversion: Berkeley DB (Btree, version 8, native byte-order)

/var/lib/rpm/Requirename: Berkeley DB (Hash, version 7, native byte-order)

/var/lib/rpm/Requireversion: Berkeley DB (Btree, version 8, native byte-order)

/var/lib/rpm/Sha1header: Berkeley DB (Btree, version 8, native byte-order)

/var/lib/rpm/Sigmd5: Berkeley DB (Btree, version 8, native byte-order)

/var/lib/rpm/Triggername: Berkeley DB (Hash, version 7, native byte-order)

Each file is a separate database in Berkeley DB format, except for a few __db data files. (These are
not really X11 font files, just plain data files. The file command is confused by the data in the files.)

The Berkeley DB Library

Available from SleepyCat Software at www.sleepycat.com/, the Berkeley DB library provides a simple
database API. This is not a traditional relational database. Instead, data values are stored in what
amounts to a persistent hash table of name/value pairs. This type of database is very quick to look up
a named entry (such as a package name) but is not so quick for iterating over all the entries.

One of the nice things about this library is that it is available in an open-source format, and you can get
programming API libraries for C, C++, Java, Python, Perl, and Tcl languages.

The RPM database is really a number of Berkeley DB databases, each designed for a different type of
query.

If something goes wrong with your RPM database, you can first try to rebuild it. If that fails, you may
need to initialize a new database, although that is generally not needed. First and foremost, however,
you should back up this database.

Chapter 4. Using the RPM Database

76

4.5.1. Backing up the RPM database
As mentioned before, the RPM database resides in the /var/lib/rpm. You can back up the RPM
database by using commands such as the following:

cd /var/lib

tar cvf rpmdb.tar ./rpm

gzip rpmdb.tar

These commands create a tar archive from the contents of the rpm directory (where the RPM
database is stored) and compress the file with the gzip command.

Note

Adding the z option to the tar command can create a compressed archive directly, without the need for
the gzip command.

4.5.2. Rebuilding the RPM database
If the RPM database has been corrupted in some way, you can use the --rebuilddb option to tell the
rpm command to rebuild your database.

For example:

rpm --rebuilddb

This command rebuilds the RPM database from the installed packages, the file named Packages in
the /var/lib/rpm directory. Only the Packages file is required. All the other files can be recreated from
the Packages file. If your database is OK, this command won't do much, other than shrink the size
of your RPM database by removing unused entries. This command will take some time to execute,
though.

Warning

Before running this command, back up your RPM database.

To check that the rpm --rebuilddb command has not damaged the RPM database, you can check
with a file listing, query all packages, and then check the results of the rpm –rebuilddb command with
another file listing when done.

Another useful technique that can help with a corrupted RPM database is to use the db_dump and
db_load utilities that come with RPM (from the SleepyCat DB database library). Use db_dump to dump
the Packages file. Then, use db_load to reload the Packages file. The act of dumping and restoring
may fix a corrupted file. As always, back up your RPM database prior to performing these commands.

4.5.3. Creating a new RPM database
If all else fails, use the --initdb option to tell the rpm command to create a new empty RPM database.
In almost all cases, you do not want to create a new RPM database, since this database will be empty.
It will not have any knowledge about the packages you have already installed on your system. That
could lead to a lot of problems, since you have the files installed, but the RPM system just doesn’t
know about them.

The basic syntax follows.

Summary

77

rpm --initdb

Note

This command should not damage an existing database.

If the RPM system cannot be rebuilt, you may have to reinstall the operating system to recreate a
clean system. In general, if things are this far gone, reinstalling may be your best answer instead of
wiping the RPM database and creating an empty database.

You can also use the --dbpath option to tell the rpm command to create an RPM database in a
different directory.

For example:

mkdir /tmp/rpm

rpm --initdb --dbpath /tmp/rpm

These commands create a temporary directory and an RPM database in the /tmp/rpm directory.

After running this command, you can examine the files created.

ls -l /tmp/rpm

total 288

-rw-r--r-- 1 root root 8192 Oct 10 20:29 __db.001

-rw-r--r-- 1 root root 1310720 Oct 10 20:29 __db.002

-rw-r--r-- 1 root root 360448 Oct 10 20:29 __db.003

-rw-r--r-- 1 root root 12288 Oct 10 20:29 Packages

This shows an empty RPM database.

4.6. Summary
This chapter covers the rpm command options to query the RPM database and RPM package files.
You can determine the packages installed on your system, as well as which packages are responsible
for the files on your system.

The RPM database maintains a lot of information about the files and packages on your system. Thus,
it is crucial for managing your Linux systems. You should back up the RPM database before and after
any installation, upgrade, or removal of packages.

You can also use the --rebuilddb option to the rpm command to rebuild a damaged RPM database.

78

Chapter 5.

79

Package Dependencies
This chapter covers:

• Understanding dependencies

• Package capabilities

• Version dependencies

• Checking dependencies

• Triggers

Packages aren’t built in a vacuum. Web applications, for example, build on system networking
libraries, system-encryption libraries, and system-file input and output libraries.

This chapter covers dependencies between packages, along with ways to discover and manage those
dependencies.

5.1. Understanding the Dependency Concept
A dependency occurs when one package depends on another. You might think it would make for an
easier-to-manage system if no package depended on any others, but you’d face a few problems, not
the least of which would be dramatically increased disk usage.

Packages on your Linux system depend on other packages. Just about every package with an
application, for example, depends on the system C libraries, since these libraries provide common
facilities that just about every program uses. Network applications typically depend on low-level
networking libraries. These dependencies really work in your favor, since a security bug fix in the
network libraries can update all applications that make use of the updated libraries.

Furthermore, sharing software means that each package has less code to maintain and thus improved
quality. Code sharing has been in the computer lexicon since the 1960s.

Although quite a few packages depend on system-level libraries, some packages depend on
applications defined in other packages. The Emacs text editor package, for example, depends on the
Perl scripting language, specifically, the perl command. Database client programs usually depend on
the database server applications.

The RPM database tracks dependency information, so it can, for example, stop attempts to remove
packages that other packages depend on or inform users of dependent packages upon installation.

5.1.1. Capabilities
In RPM terminology, each package provides capabilities. A capability is simply a text string that the
package claims it provides. In most cases, a capability names a file or a package. But the capability
can be any arbitrary text string.

Other packages can then depend on certain capabilities. (You can use this concept in building your
own packages.) Each package lists the capabilities it requires as well as the capabilities it provides.

Cross Reference

Chapter 5. Package Dependencies

80

Package dependencies and capabilities are very important when creating spec files for building your
own RPM packages, the subject of Chapter 9, Working with Spec Files .

When you install a package, the capability information is stored in the RPM database. When you
remove a package, the rpm command checks the RPM database. If the package you are trying to
remove provides a capability that another package needs, the command will generate an error. If you
try to remove a package that other packages depend on, you'll see an error like the following:

rpm -e setup

error: Failed dependencies:

setup is needed by (installed) basesystem-8.0-1

setup >= 2.0.3 is needed by (installed) initscripts-6.95-1

setup >= 2.5.4-1 is needed by (installed) filesystem-2.1.6-5

setup is needed by (installed) xinetd-2.3.7-2

setup is needed by (installed) dump-0.4b28-4

To verify that the package has not been removed, you can query for the package after trying to remove
it, as shown following:

rpm -q setup

setup-2.5.20-1

This shows that the rpm command has not removed the setup package due to the errors.

Cross Reference

Chapter 3, Using RPM covers ways to force the rpm command to do what you want, although this can
cause problems if you try to force the issue and remove a crucial package. In virtually all cases, do not
use any of the force options, as this can cause problems with the RPM system, since the force options
are purposely ignoring safety checks performed by the rpm command.

Many capabilities that packages require are system libraries, especially shared libraries. Shared
libraries, which usually have a .so file extension (short for shared object), provide a memory-efficient
means for applications to share program code. These libraries may also have a .so.number extension,
such as libc.so.6.

Note

Shared libraries on Windows are called DLLs, short for Dynamic Link Libraries. The implementations
differ, but the Windows DLL concept is similar to Linux and Unix shared objects.

Shared libraries have been part of Linux for a long time and have nothing to do with the RPM system.
Shared libraries accessed by a program, however, represent natural dependencies. Because so many
programs depend on shared libraries, the RPM system can automatically handle many shared-library
dependencies.

Note

To list the shared libraries that a program accesses, use the ldd command, for example:

$ ldd /bin/grep

Version dependencies

81

libc.so.6 => /lib/i686/libc.so.6 (0x42000000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Other dependencies include version-specific dependencies.

5.1.2. Version dependencies
An application may depend on a capability provided by another package. It may also depend on the
capability that a specific version of another package provides. For example, some add-ons to the
Apache Web server depend on the version of Apache. The Apache 2.0 version made a number of
changes that affect add-on packages. Some Apache add-on packages depend on version 1.3; others
depend on version 2.0.

Most package dependencies assume some level of compatibility and require a version at or above a
given version number (for example, version 2.0 or later).

Note

You’ll see more version dependencies when applications make major changes, such as the change
from 1.3 to 2.0 for the Apache Web server.

5.1.3. Conflicts
Some packages may provide capabilities that interfere with those in other packages. This is called a
conflict. Installing conflicting packages is an error. For example, the httpd package (the Apache Web
server) conflicts with the thttpd package. Both packages want to provide the primary Web server for a
system.

The RPM system will prevent you from installing packages that conflict with other packages. You can
force the issue, using the techniques described in Chapter 3, Using RPM , and override the RPM
system. But in most cases, you should not install packages that conflict.

5.1.4. Obsoletes
The RPM system supports one more type of dependency, called obsoletes. This refers to a capability
that a package provides that makes another capability obsolete. For example, a new version of
the perl interpreter may make an older version obsolete. In most cases, the obsoletes dependency
should be used when the name of a package changes. For example, the apache Web server package
became the httpd package. You would expect the new package, httpd, to obsolete the old package
name, apache.

This brings the total to four types of dependencies that the RPM system tracks:

*Requires, which tracks the capabilities a package requires

*Provides, which tracks the capabilities a package provides for other packages

*Conflicts, which describes the capabilities that if installed, conflict with capabilities in a package

*Obsoletes, which describes the capabilities that this package will make obsolete

Packages advertise this dependency information. Each dependency holds the type, such as requires,
a capability, such as a shared library or a package name, and optionally a version number, such as
requiring the python package at a version number greater than or equal to 2.2 (python >= 2.2).

Chapter 5. Package Dependencies

82

You can check package dependencies by using, as you’d guess, the rpm command.

5.2. Checking for Dependencies
The rpm –q command queries the RPM database or RPM package files. With the right options to
this command, you can check for the four types of package dependencies as well. These options are
based on the concept of capabilities introduced previously.

You can query what capabilities a package requires. You can also query what capabilities a package
provides. You can query for the obsoleting and conflicting information as well. Furthermore, given a
capability, you can query which packages require this capability as well as which packages provide
this capability.

Cross Reference

There are quite a few more options you can use with the rpm –q command for querying packages.
See Chapter 4, Using the RPM Database for more on querying packages and package files.

5.2.1. Determining the capabilities a package requires
The first and most important step is to determine what capabilities a package requires. If all the
required capabilities are met, you can safely install the package (barring other things that can go
wrong, such as conflicts). The requires dependencies are by far the most important.

The --requires option to the rpm –q command lists the capabilities a given package requires. The basic
syntax is:

rpm –q query_options --requires packages

For example:

$ rpm -qp --requires sendmail-8.12.5-7.i386.rpm

/usr/sbin/alternatives

rpmlib(VersionedDependencies) <= 3.0.3-1

chkconfig >= 1.3

/usr/sbin/useradd

/bin/mktemp

fileutils

gawk

sed

sh-utils

procmail

bash >= 2.0

Determining the capabilities a package requires

83

/bin/sh

/bin/sh

/bin/sh

/bin/sh

/bin/sh

rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(CompressedFileNames) <= 3.0.4-1

/bin/bash

libcrypto.so.2

libcrypt.so.1

libc.so.6

libc.so.6(GLIBC_2.0)

libc.so.6(GLIBC_2.1)

libc.so.6(GLIBC_2.1.3)

libc.so.6(GLIBC_2.2)

libdb-4.0.so

libgdbm.so.2

libhesiod.so.0

liblber.so.2

libldap.so.2

libnsl.so.1

libnsl.so.1(GLIBC_2.0)

libresolv.so.2

libresolv.so.2(GLIBC_2.0)

libresolv.so.2(GLIBC_2.2)

libsasl.so.7

libssl.so.2

This example tests an RPM package file, sendmail-8.12.5-7.i386.rpm, for the requires dependency,
in other words, what capabilities the package requires. The sendmail package depends on a lot of
other parts of the system, as you can see in the response to the command shown previously. Most

Chapter 5. Package Dependencies

84

of the dependencies are for system libraries (all the dependencies ending in .so or .so.number). This
package requires other capabilities (packages in this case). It also requires the chkconfig package at
a specific version, version 1.3 or higher, and the bash package at version 2.0 or higher. The sendmail
package also requires a particular version of the RPM system (the rpmlib dependency).

Warning

Always check what a package requires before installing the package. You can also use the --test
option when trying to install the package to first test whether the installation can proceed. See
Chapter 3, Using RPM for details on installing packages and the --test option. The rpm command will
perform all these checks for you anyway. Checking in advance, though, with the --test option, helps
avoid dependency hell with circular dependencies.

You can also check for what an installed package requires with the --requires option. For example:

rpm -q --requires sendmail

You can use the -R short option in place of the --requires option.

This command returns the same data as the previous command but queries an installed package
rather than an RPM package file.

You might assume that applications have the most dependencies, which is true. But even source
packages may depend on other packages, often the packages needed to build the sources into an
application. For example, the following command lists the capabilities required by a source RPM:

$ rpm -qp --requires telnet-0.17-23.src.rpm

ncurses-devel

Some packages require particular versions of other packages, for example:

rpm -qp --requires xcdroast-0.98a9-18.src.rpm

imlib-devel >= 1.9.13-9

gtk+-devel >= 1.2.10

desktop-file-utils >= 0.2.92

rpmlib(CompressedFileNames) <= 3.0.4-1

This example shows that the xcdroast source package requires the imlib-devel capability (in this case,
a package) at version 1.9.13-9 or higher, the gtk+-devel package at version 1.2.10 or higher, and the
desktop-file-utils package at version 0.2.92 or higher. This is a more stringent requirement than just
depending on the given packages being installed. This RPM is also an older RPM package, based on
the requirement for the rpmlib to be prior or equal to 3.0.4-1.

Some packages may require a particular version of the rpmlib, or RPM library. For example, the setup
package contains special system configuration files, including the default password file, /etc/passwd.

$ rpm -q --requires setup

rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(CompressedFileNames) <= 3.0.4-1

Determining the capabilities a package provides

85

As shown in this example, this package depends only on capabilities of the RPM system itself. The
particular requirements shown here specify how the rpm command should treat the package payload,
including how the files are listed in the package and what type of compression is used.

5.2.2. Determining the capabilities a package provides
Packages require capabilities, and they can provide capabilities for other packages to require. To list
the capabilities a package provides, use the --provides option. These capabilities can be arbitrary
names, shared libraries (.so files), and the package name itself. The basic syntax is:

rpm –q query_options --provides packages

For example, the tcsh shell package provides two capabilities, at a particular version number, as
shown following:

$ rpm -q --provides tcsh

csh = 6.12

tcsh = 6.12-2

Other packages provide a lot more, including shared libraries. The httpd package provides a long list
of capabilities, as shown following:

$ rpm -q --provides httpd

webserver

httpd-mmn = 20020628

libapr.so.0

libaprutil.so.0

mod_access.so

mod_actions.so

mod_alias.so

mod_asis.so

mod_auth_anon.so

mod_auth_dbm.so

mod_auth_digest.so

mod_auth.so

mod_autoindex.so

mod_cern_meta.so

mod_cgi.so

mod_dav_fs.so

Chapter 5. Package Dependencies

86

mod_dav.so

mod_deflate.so

mod_dir.so

mod_env.so

mod_expires.so

mod_headers.so

mod_imap.so

mod_include.so

mod_info.so

mod_log_config.so

mod_mime_magic.so

mod_mime.so

mod_negotiation.so

mod_proxy_connect.so

mod_proxy_ftp.so

mod_proxy_http.so

mod_proxy.so

mod_rewrite.so

mod_setenvif.so

mod_speling.so

mod_status.so

mod_suexec.so

mod_unique_id.so

mod_userdir.so

mod_usertrack.so

mod_vhost_alias.so

httpd = 2.0.40-8

5.2.3. Checking for conflicts
Use the --conflicts option to check what conflicts with a given package. The basic syntax is:

Determining which packages require a certain capability

87

rpm –q query_options --conflicts packages

For example:

rpm -q --conflicts httpd

thttpd

This command tells you that the httpd package (the Apache Web server) conflicts with the thttpd
package. Both packages provide a similar capability. By marking the conflict, the httpd package tells
you that you cannot normally install both the httpd and thttpd packages on a system. This information
comes from the httpd package, which has an entry in the package that indicates the conflict. The
conflict is not guaranteed. These packages may work together, but the creator of the httpd package
felt that httpd would not work with the thttpd package and helpfully let us all know.

The RPM system will report on the conflicts and indicate an error if you try to install conflicting
packages. The idea of conflicts really gives package creators a way to alert users to potential
problems and to tell us that one package likely won’t work with another.

The force options discussed in Chapter 3, Using RPM allow you to override conflicts, if absolutely
necessary. In most cases, though, a conflict presents you with the choice to install one or the other of
the packages, but not both.

5.2.4. Determining which packages require a certain capability
In addition to querying capabilities and requirements of a particular package, you can query the
capabilities themselves. This function allows you to check which packages require a given capability.

The --whatrequires option tells the rpm command to report on which packages in the RPM database
require a certain capability. The basic syntax is:

rpm –q query_options --whatrequires capability

Some packages are not required by anything:

$ rpm -q --whatrequires tcsh

no package requires tcsh

Note

Don’t worry about the poor tcsh package being lonely. Because other packages do not require this
package, you can easily remove the tcsh package without affecting the rest of your system.

This example shows a package name as the capability. Shared libraries are also considered
capabilities. You can query on these as well. For example:

$ rpm -q --whatrequires librpm-4.1.so

rpm-4.1-1.06

net-snmp-5.0.1-6

rpm-python-4.1-1.06

rpm-devel-4.1-1.06

Chapter 5. Package Dependencies

88

rpm-build-4.1-1.06

This example shows that the core RPM library is used by a number of RPM-related packages, along
with, oddly enough, the net-snmp system-management package.

The capability you query for must be an explicit capability. For example, you will get different results if
you query for the bash package or the command, /bin/bash. If you query for the bash package, you will
see the packages that explicitly require the capability bash. For example:

$ rpm -q --whatrequires bash

gpm-1.19.3-20

info-4.0b-3

initscripts-6.40-1

sendmail-8.11.6-3

sysklogd-1.4.1-4

vixie-cron-3.0.1-63

ypbind-1.8-1

ypserv-1.3.12-2

If you instead query for the capability /bin/bash, that is, the file /bin/bash, you will see a different list of
packages. For example:

$ rpm -q --whatrequires /bin/bash

apmd-3.0final-34

at-3.1.8-20

autofs-3.1.7-21

autofs-3.1.7-21

bash-2.05-8

bind-9.1.3-4

cipe-1.4.5-6

crontabs-1.10-1

dialog-0.9a-5

gpm-1.19.3-20

hotplug-2001_04_24-11

initscripts-6.40-1

ipchains-1.3.10-10

Determining which packages require a certain capability

89

iproute-2.2.4-14

kudzu-0.99.23-1

logwatch-2.1.1-3

man-1.5i2-6

mkbootdisk-1.4.2-3

mkinitrd-3.2.6-1

mutt-1.2.5i-17

openssh-server-3.1p1-2

pine-4.44-1.72.0

rpm-build-4.0.3-1.03

rusers-server-0.17-12

sendmail-8.11.6-3

shapecfg-2.2.12-7

sharutils-4.2.1-8

sysklogd-1.4.1-4

tetex-1.0.7-30

ucd-snmp-4.2.1-7

vixie-cron-3.0.1-63

xinetd-2.3.3-1

ypbind-1.8-1

ypserv-1.3.12-2

There is no short form for the --whatrequires option.

Other capabilities, especially system-level shared libraries, are used by a large number of packages.
For example:

rpm -q --whatrequires libcrypt.so.1 | sort

autofs-3.1.7-21

cvs-1.11.1p1-3

cyrus-sasl-1.5.24-23

cyrus-sasl-devel-1.5.24-23

cyrus-sasl-plain-1.5.24-23

Chapter 5. Package Dependencies

90

fetchmail-5.9.0-1

ircii-4.4Z-7

krbafs-1.0.9-2

nss_ldap-172-2

openldap12-1.2.12-4

openldap-2.0.11-13

openldap-clients-2.0.11-13

pam-0.75-19

pam_krb5-1.46-1

passwd-0.64.1-7

perl-5.6.0-17

pine-4.44-1.72.0

pwdb-0.61.1-3

python-1.5.2-35

rsh-0.17-5

rsh-server-0.17-5

screen-3.9.9-3

sendmail-8.11.6-3

shadow-utils-20000902-4

sh-utils-2.0.11-5

SysVinit-2.78-19

tcsh-6.10-6

util-linux-2.11f-17

vim-enhanced-5.8-7

wu-ftpd-2.6.1-20

xinetd-2.3.3-1

ypserv-1.3.12-2

yp-tools-2.5-1

Quite a few packages require encryption and decryption (the purpose of this library), making this
library crucial to operating the system. Many of the packages listed here are in turn depended on by
even more packages.

Determining which package provides a certain capability

91

To help trace back capabilities, you can combine the queries. For example:

$ rpm -q --provides sendmail

smtpdaemon

sendmail = 8.11.6-3

$ rpm -q --whatrequires smtpdaemon

fetchmail-5.9.0-1

mutt-1.2.5i-17

The first command lists the capabilities that the sendmail package provides, including the generic
capability of smtpdaemon. You can then list which packages require this particular capability, as shown
in the second command. This is a big help for wading through a mess of packages depending on
packages depending on yet more packages.

5.2.5. Determining which package provides a certain capability
To complete the circle, you can query for which package provides a certain capability. This knowledge
allows you to trace a requirement back to the package that provides it.

The --whatprovides option tells the rpm command to list the capabilities a package provides. Use the --
whatprovides option with the –q, or query, option to the rpm command. (There is no short form for the
--whatrprovides option.)

The basic syntax follows:

rpm –q --whatprovides capability

For example, to query what package provides the capability webserver, use the following command:

$ rpm -q --whatprovides webserver

httpd-2.0.40-8

In this case, the capability is identified by an arbitrary string, webserver. This is a generic name for a
given capability, serving Web pages.

You can also trace individual files using the --whatprovides option. For example:

$ rpm -q --whatprovides /etc/skel/.bashrc

bash-2.05-8

Note

The rpm –qf command, covered in the last chapter, is an easier way to get to the same information
when tracking which package provides a particular file. For example:

rpm -qf /etc/skel/.bashrc

bash-2.05-8

If you are querying particular files, use rpm –qf. If you are querying capabilities, use --whatprovides.

Chapter 5. Package Dependencies

92

5.3. Triggers
A trigger is a script that gets run when a package is installed or uninstalled. Triggers allow packages
that depend on other packages to properly configure themselves when those other packages are
installed or removed.

The --triggers option to the rpm command lists any trigger scripts in a given package. For example:

$ rpm -q --triggers sendmail

triggerpostun script (through /bin/sh) -- sendmail < 8.10.0

/sbin/chkconfig --add sendmail

This shows that the sendmail mail transfer agent (mail-sending program) provides a short trigger
script.

In contrast, the anonftp (anonymous file transfer) package has a fairly complex set of triggers, as
shown following:

$ rpm -q --triggers anonftp

triggerin script (through /bin/sh) -- glibc

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

Kill off old versions

rm -f /var/ftp/lib/ld-* /var/ftp/lib/libc* /var/ftp/lib/libnsl* /var/ftp/lib/lib

nss_files* &>/dev/null || :

Copy parts of glibc, needed by various programs in bin.

LIBCVER=`basename $(ls --sort=time /lib/libc-*.so |head -n 1) .so |cut -f2- -d-`

copy /lib/ld-${LIBCVER}.so /var/ftp/lib

copy /lib/libc-${LIBCVER}.so /var/ftp/lib

copy /lib/libnsl-${LIBCVER}.so /var/ftp/lib

copy /lib/libnss_files-${LIBCVER}.so /var/ftp/lib

md5sum /var/ftp/lib/lib*-*.so /var/ftp/lib/libtermcap.so.*.*.* 2>/dev/null >/var

/ftp/lib/libs.md5

chmod 0400 /var/ftp/lib/libs.md5

Use ldconfig to build symlinks and whatnot.

[! -e /var/ftp/etc/ld.so.conf] && touch /var/ftp/etc/ld.so.conf

/sbin/ldconfig -r /var/ftp

Triggers

93

triggerin script (through /bin/sh) -- fileutils

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/ls /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

triggerin script (through /bin/sh) -- cpio

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/cpio /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

triggerin script (through /bin/sh) -- tar

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/tar /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

triggerin script (through /bin/sh) -- gzip

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/gzip /var/ftp/bin

ln -sf gzip /var/ftp/bin/zcat

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

triggerin script (through /bin/sh) -- libtermcap

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

rm -f /var/ftp/lib/libtermcap.so.*.*.* &>/dev/null || :

Chapter 5. Package Dependencies

94

copy '/lib/libtermcap.so.*.*.*' /var/ftp/lib

md5sum /var/ftp/lib/lib*-*.so /var/ftp/lib/libtermcap.so.*.*.* 2>/dev/null >/var

/ftp/lib/libs.md5

chmod 0400 /var/ftp/lib/libs.md5

Use ldconfig to build symlinks and whatnot.

[! -e /var/ftp/etc/ld.so.conf] && touch /var/ftp/etc/ld.so.conf

/sbin/ldconfig -r /var/ftp

triggerin script (through /bin/sh) -- ncompress

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /usr/bin/compress /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

triggerpostun script (through /bin/sh) -- anonftp 4.0

if ["$2" != 1] ; then

The user has multiple glibc packages installed. We can't read the

user's mind, so don't do anything.

exit 0

fi

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

Kill off old versions

rm -f /var/ftp/lib/ld-* /var/ftp/lib/libc* /var/ftp/lib/libnsl* /var/ftp/lib/lib

nss_files* &>/dev/null || :

Copy parts of glibc, needed by various programs in bin.

LIBCVER=`basename /lib/libc-*.so .so | cut -f2- -d-`

copy /lib/ld-${LIBCVER}.so /var/ftp/lib

copy /lib/libc-${LIBCVER}.so /var/ftp/lib

copy /lib/libnsl-${LIBCVER}.so /var/ftp/lib

copy /lib/libnss_files-${LIBCVER}.so /var/ftp/lib

Summary

95

copy /bin/ls /var/ftp/bin

copy /bin/cpio /var/ftp/bin

copy /bin/tar /var/ftp/bin

copy /bin/gzip /var/ftp/bin

ln -sf gzip /var/ftp/bin/zcat

copy /usr/bin/compress /var/ftp/bin

rm -f /var/ftp/lib/libtermcap.so.*.*.* &>/dev/null || :

copy '/lib/libtermcap.so.*.*.*' /var/ftp/lib

Use ldconfig to build symlinks and whatnot.

[! -e /var/ftp/etc/ld.so.conf] && touch /var/ftp/etc/ld.so.conf

/sbin/ldconfig -r /var/ftp

Generate md5sums for verifyscript

md5sum /var/ftp/lib/lib*-*.so /var/ftp/lib/libtermcap.so.*.*.* 2>/dev/null >/var

/ftp/lib/libs.md5

chmod 0400 /var/ftp/lib/libs.md5

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

Reading through the scripts indicates that this package seems to be triggered by the glibc standard
C programming library package. You can confirm this by using the --triggeredby option to the rpm
command, as shown following:

$ rpm -q --triggeredby glibc

anonftp-4.0-9

The anonftp package needs to be notified on changes to the glibc package, so that the anonftp
package can properly set up its application. It actually uses part of glibc and is therefore highly
susceptible to changes in the glibc package. Thus, the use of triggers provides essentially an
extended form of dependencies. The anonftp package in this example depends so much on the glibc
package that it needs to execute scripts whenever the glibc package changes.

5.4. Summary
Linux comes with many packages. Most of these packages depend on some other packages installed
on your system. In RPM terms, packages provide capabilities and depend on capabilities that other
packages provide. When the rpm command checks the RPM database for dependencies, it checks to
ensure that all the capabilities that a given package requires are met by other installed packages.

You can trace the capabilities a package requires with the --requires option to the rpm command. You
can see what capabilities a package provides for others with the --provides option.

Chapter 5. Package Dependencies

96

Once you know a capability, you can query which package provides that capability with the --
whatprovides option to the rpm command. And you can see which packages require that capability
with the --whatrequires option.

Triggers are an extended form of dependencies. A trigger is a script that gets executed when other
packages are installed or removed. This allows a package with a high dependence on another
package to track changes in that package and reconfigure itself as needed.

The next chapter delves into transactions, which provide a safe means to install a set of packages.
With transactions, either all the packages get installed, or none.

Chapter 6.

97

Transactions
This chapter covers:

• Understanding transactions

• Querying for packages based on transactions

• Rolling back transactions

• Saving old packages when upgrading

When packages depend on other packages, you may have to install multiple packages to add a single
application. Some of the packages may install cleanly; others may not. But you have to install all of the
packages to get the complete application. The designers of the RPM system understood this problem
and added the concept of transactions to RPM.

This chapter covers transactions and how they can help you cleanly install a set of dependent
packages. But transactions won’t solve all your problems. You still have to resolve conflicts and
dependencies by using the techniques provided in the last three chapters.

6.1. Understanding Transactions
A transaction is a way to delimit a set of operations. All the operations can be undone, often called
rolled back. Once rolled back, the system is back in the same state it was prior to the transaction. If
all the operations succeed, though, the system will be in a new state. The key issue is that all of the
operations must complete successfully, or you can roll back the entire transaction. The assumption is
that if any of the operations fail, the system will be in an inconsistent or erroneous state. Transactions
are a way to prevent that.

Transactions are common when working with databases, but they are just as important when working
with packages.

Starting with RPM version 4.0.4, transactions and rollbacks became a workable part of any
administrator's toolkit. With RPM, the rpm command sets up a transaction any time you attempt
to install, remove, or upgrade more than one package. The rpm command automatically makes a
transaction.

6.1.1. When do you need transactions?
Whenever you install or remove packages, the RPM system assigns a transaction and a transaction
ID to the set of packages. You can then perform operations on the packages that share the same ID,
including rolling back the transaction.

Note

Rollbacks work only for package upgrades with the 4.1 version of the RPM system, not package
installs

The RPM system saves an image of the RPM package header for each package installed or removed.
You can use this image, along with RPM transaction IDs, to back out of transactions should something
go wrong when setting up your system.

The main advantage of transactions with RPM, though, is the fact that the rpm command automatically
sets up a transaction for all the packages on each command line and does not perform the operation

Chapter 6. Transactions

98

if any package fails. This ability to automatically set up transactions for each call to the rpm command
eliminates many errors when working with packages.

Use a transaction when you need to be sure that a set of packages install properly.

6.1.2. Backing out of transactions
With RPM, backing out of a transaction involves two operations: rolling back the transaction and
reinstalling the former packages to restore the previous system state. In the simplest case, the rpm
command handles all the tasks for you. If you try to install, upgrade, or remove multiple packages and
any package fails, the rpm command will restore the system state for you.

This automatic support for transactions is a great help to system administrators, but it only applies
when you first install, upgrade, or remove the packages. If you have upgraded your system and later
discover problems, then you can also use the --rollback option to roll the system back from a set of
upgrades, in a limited set of circumstances.

6.2. Transactions with the rpm Command
To set up an RPM transaction, you don't have to do much. All you need to do is pass more than one
RPM package on the rpm command line. For example, to set up a transaction for installing three
packages, use a command like the following:

rpm -ihv package1.rpm package2.rpm package3.rpm

If any of the packages fail to install, the rpm command will not install any packages. All of the
packages will be installed, or none.

This way, if you have a number of packages that together perform some function, such as an
Integrated Development Environment (IDE), along with program-language compilers and other
software-development tools, you can ensure that all get installed.

As an example, say you need to install the gnorpm package, which provides a graphical front end
for the rpm command, and the rpmrebuild package, which allows you to create RPMs from already-
installed packages.

Cross Reference

The gnorpm command is covered in Chapter 7, RPM Management Software . The rpmrebuild package
is covered in the "Saving Old Packages" section in this chapter.

You can install these packages with a transaction by using the following command:

rpm -ihv gnorpm-0.9-1.i386.rpm rpmrebuild-1.0-0.noarch.rpm

Preparing... ### [100%]

package gnorpm-0.9-1 is already installed

The rpmrebuild package can be installed. (We know this since the rpm command did not issue an
error about this package.) But because it was on the same command line as the gnorpm package, the
transaction failed. No packages were installed.

To check that the rpmrebuild package was not installed (that is, to check that the transaction worked
as expected), you can use the rpm –q command to see if the rpmrebuild package was installed or not.
To do so, use a command like the following:

Transactions with the rpm Command

99

rpm -q rpmrebuild

package rpmrebuild is not installed

This shows that the rpmrebuild package was not installed, even though the package could be installed
on its own. To check that the package could be installed, you can use the --test option, as shown
following:

rpm -i --test rpmrebuild-1.0-0.noarch.rpm

#

This command shows that the rpmrebuild package would install successfully on its own. If there were
problems, the rpm command would have issued an error message.

This example shows that when you try to install multiple packages with the rpm command, should any
fail, the rpm command will not install any.

The rpm command works similarly for removing packages and upgrading packages. When removing
packages, you’ll see an error like the following if any of the packages on the command line cannot be
removed:

rpm -e setup jikes-1.17

error: Failed dependencies:

setup is needed by (installed) basesystem-8.0-1

setup >= 2.0.3 is needed by (installed) initscripts-6.95-1

setup >= 2.5.4-1 is needed by (installed) filesystem-2.1.6-5

setup is needed by (installed) xinetd-2.3.7-2

setup is needed by (installed) dump-0.4b28-4

The setup package could not be removed because it had several capabilities needed by other
packages. You can check that the jikes package was not removed by using the rpm –q command,
even though it had no failed dependencies:

rpm -q jikes

jikes-1.17-1

This package was not removed because it appeared as part of the same command that failed, so
none of the operations were performed.

When upgrading, you will also see an error message if any of the package upgrades fail. For example:

rpm -Uhv jikes-1.14-1.i386.rpm autoupdate-3.1.5-1.noarch.rpm

error: jikes-1.14-1.i386.rpm cannot be installed

You can then check that the jikes package, in this example, was not downgraded to the earlier version
with the rpm –q command:

rpm -q jikes

Chapter 6. Transactions

100

jikes-1.17-1

6.2.1. Transaction IDs
The rpm command gives every package installed a transaction ID. The transaction ID is a Unix
time stamp (number of seconds since January 1, 1970). You can then perform some operations on
packages based on the transaction ID.

Note

The fact that a transaction ID uses a Unix timestamp may change in the future.

All the packages installed at the same time are given the same transaction ID. This means that you
can perform operations on a set of packages, the packages that were installed together.

But there’s also a downside to this. All the packages installed when you first installed or upgraded
your Linux system are given the same transaction ID. This means you cannot selectively act on these
packages using the transaction ID, because you will likely get far more packages than you want to
work on.

6.2.1.1. Viewing RPM Transaction IDs
To view the install transaction ID (a date code) for a given package, you can use a command like the
following:

$ rpm -q --qf "%-20{NAME} %-20{INSTALLTID}\n" jikes

jikes 1035589778

This command uses the --qf or --queryformat option to specify the data to return from the RPM query
command. In this case, the command requests the name of the package as well as the transaction ID
(TID) for installation.

Cross Reference

Chapter 4, Using the RPM Database describes the --queryformat option.

There is also a transaction ID for removal, the REMOVETID. You can also query for this ID. For
example, if a package hasn't been removed, you'll see an entry like the following:

$ rpm -qa --qf "%-20{NAME} %-20{REMOVETID}\n" termcap

termcap (none)

6.2.1.2. Viewing the Packages Associated with a Transaction ID
Once you have a transaction ID, you can use the --tid option, short for transaction ID, to query for the
package associated with a given transaction, using a command like the following:

$ rpm -q --tid 1035589778

jikes-1.17-1

This example uses the transaction ID that the earlier query example returned. If you installed more
than one package at the same time, you will see a listing of all the packages that share the transaction
ID.

Transaction IDs

101

For example, to see many packages with one transaction ID, you can query for packages installed
when you installed or upgraded your version of Linux. First, query for the transaction ID of a package
you know was installed with the Linux distribution, such as setup on a Red Hat system:

$ rpm -q --qf "%-20{NAME} %-20{INSTALLTID}\n" setup

setup 1033838323

Second, use this transaction ID and query for all packages with this ID, using code like the following:

$ rpm -q --tid 1033838323 | more

redhat-menus-0.26-1

glibc-2.2.93-5

cracklib-2.7-18

gdbm-1.8.0-18

gmp-4.1-4

libacl-2.0.11-2

libjpeg-6b-21

linc-0.5.2-2

pcre-3.9-5

shadow-utils-20000902-12

libtermcap-2.0.8-31

freetype-2.1.2-7

info-4.2-5

fileutils-4.1.9-11

psmisc-20.2-6

ntp-4.1.1a-9

mount-2.11r-10

cracklib-dicts-2.7-18

krb5-libs-1.2.5-6

cyrus-sasl-2.1.7-2

usermode-1.63-1

Xft-2.0-1

Note

Chapter 6. Transactions

102

Be sure to replace the transaction ID shown here with the transaction ID obtained by querying your
system.

This example shows just a few of the packages installed when the Red Hat Linux was installed.

With these options, you can find the transaction IDs for given packages and can use the rpm
command to install, remove, or otherwise modify the packages that share a transaction ID.

6.2.2. Rolling Back Transactions
The --rollback option to the rpm command allows you to roll back upgrades based on a time. Use a
command like the following:

rpm –U --rollback "3 months ago"

The --rollback option is very limited in what it can do. The --rollback option works only for packages
that have been upgraded. You cannot rollback the initial installation of a package. This is to prevent
you from accidentally rolling back all packages.

The --rollback option works best if you want to restore the system to a previous state, prior to
performing any other RPM operations. That is, soon after you upgraded a package and decide that it
isn’t working right. If you have modified the RPM system after performing the transaction you want to
rollback, there may be unintended consequences if any new package depends on the packages you
want to roll back. In addition, the --rollback option only works in limited situations but does not always
report when these conditions are not met. The rpm command may simply do nothing, or it may remove
packages you do not expect.

Warning

Before running the --rollback option, backup your RPM database as described in Chapter 4, Using the
RPM Database .

Because of all these limitations, rollbacks do not work in all situations. In place of the --rollback option,
you can use the query shortcuts introduced in Chapter 4, Using the RPM Database and find the
packages you have installed recently (if that is what you want to roll back). In this case, you can use
the rpm command to remove the packages you want to get rid of and reinstall the packages you want
to restore.

In many cases, this manual approach is safest, and you will have a clearer understanding about what
was installed or upgraded on your system.

6.3. Saving Old Packages
When installing, removing, or upgrading, you can use the --repackage command-line option to save a
version of something like the old package to a file, making a backup of the older package contents.

Warning

The package created by the --repackage option is not a complete RPM package. You can use the
rpmbuild command to make it into a complete package, but by itself, it will not be a complete package.
See Chapter 9, Working with Spec Files, Chapter 10, Advanced RPM Packaging, and Chapter 11,
Controlling the Build with rpmbuild for more on building packages.

Saving Old Packages

103

You can later reinstall the old files, once they have been made into a complete package. This can be
quite useful if something goes wrong or the upgraded package has bugs. You can fall back to the old
package if needed.

By default, the --repackage option puts the old package in the /var/spool/repackage directory. Other
common directories are /var/spool/up2date or /var/tmp. Your RPM configuration determines the
directory used by this option.

Note

The up2date name comes from the Red Hat service for keeping a system up to date with regard to
package versions.

For example, say you have a package, jikes (a Java programming language compiler used in previous
examples) that you want to upgrade. But you are worried that the new version may not work properly.

First, check the version you have. For example:

rpm -q jikes

jikes-1.14-1

This shows you are at version 1.14 of the jikes Java compiler. You can then upgrade to version 1.17
while repackaging the old version, as shown following:

rpm -Uhv --repackage jikes-1.17-glibc2.2-1.i386.rpm

Preparing... ### [100%]

Repackaging...

1:jikes ### [100%]

Upgrading...

1:jikes ### [100%]

This upgrade has kept a copy of the old package in the /var/spool/repackage directory. You can verify
this with the following command:

$ ls -l /var/spool/repackage/

total 692

-rw-r--r-- 1 root root 703037 Oct 25 18:49 jikes-1.14-1.i386.rpm

You can see a version of the old package, with the old version number.

Warning

This is not the same as the original package. This is not a complete package.

The repackaged RPM contains a snapshot of the package’s files as they were on your hard disk, not
as they were when you originally installed the package. Thus, the contents may differ if the files have
changed on your hard disk. In addition, the --repackage option may not properly sign the package as
the original was.

Chapter 6. Transactions

104

In addition to the --repackage option with the rpm command, you can use a free tool called rpmrebuild
to make snapshots of any installed packages.

Written by Eric Gerbier, rpmrebuild allows you to create an RPM from the installed, and perhaps
modified, version of a package. You don’t have to upgrade, remove, or install a new package, as you
do with the --repackage option.

Download rpmrebuild from http://rpmrebuild.sourceforge.net/.

6.4. Summary
Transactions allow you to install multiple packages as a group and know that either all the packages
will succeed in installing or none of them will. This is very important if you have a set of interlocking
packages that you need to install.

All the packages you install, remove, or upgrade on the same command line are automatically made
part of a transaction. The rpm command will ensure that all packages can be installed, removed, or
upgraded, and will not perform the operation unless all will succeed.

All packages installed or removed are given a transaction ID, which uses a Unix timestamp (the
number of seconds since January 1, 1970). All packages installed or removed at the same time are
given the same transaction ID. You can then query by transaction IDs to perform operations on all the
packages installed together.

The --repackage option tells the rpm command to make a backup RPM of the current package when
you are installing or upgrading a more recent version or removing the package. By default, the backup
RPM is placed in the /var/spool/repackage directory. Note that a package created this way is not
exactly the same as the original package. Files may have changed on disk. In addition, packages
created with the --repackage option are not real valid RPM packages. You cannot install these
packages without performing extra operations to create a real RPM package from the repackaged
data.

Chapter 7.

105

RPM Management Software
This chapter covers:

• Finding packages in RPM format

• Graphical tools to manage RPM packages

• Extending RPM management with additional tools

You can find a variety of software packages to ease the work of managing RPM-based systems.
These utilities can help you find a specific software application packaged using RPM or search
through a collection of RPM-packaged software to locate applications with specific features. Similarly,
several utilities provide features to ease long-term system-management tasks. These applications
provide features such as automatic updating of existing installed software with more recent versions or
simplification of software installation by automating installation of any required software dependencies.

This chapter covers a number of tools for finding packages in RPM format, as well as tools to help
manage the RPMs on your system.

7.1. Locating RPMs
RPM provides a powerful tool for managing software installed on a system. With a single command,
an entire application can be installed on the system in a ready-to-run configuration. With a different
command, the entire application can be removed without having manually to track down all of the
associated files scattered throughout the hard drive. For RPM to work, however, the software being
managed must be packaged in the proper RPM format. RPM packages can be easily prepared if
necessary, but you can save time by using the wide variety of software already available in the RPM
format. The only trick to using this RPM-packaged software is finding it.

As you start to search for RPM packages on the Internet, you’ll find thousands of packages available.
Many of these packages are built specifically for various Linux distributions, such as Conectiva, SUSE,
Red Hat, or Mandrake. In many cases, the Linux distribution won’t matter, but in general it's best to
download packages built for your version of Linux, such as Red Hat.

Note

Although the examples in this book assume Red Hat Linux as a base, just about everything applies to
all versions of Linux that use the RPM system, unless noted otherwise.

Internet search engines are popular, but they aren’t very helpful for finding RPM packages, especially
because lots of Web pages have the term rpm (including those covering revolutions per minute). A
more efficient approach is to use one of the RPM-specific Internet search tools such as rpmfind.

7.1.1. rpmfind and rpm2html
One popular free tool for locating RPMs is rpmfind, written by Daniel Veillard. This tool provides a
command-line utility that can search for packages by name or description, displaying or optionally
downloading any matching packages it finds. It can even provide a list of the dependencies that those
matching packages require to run and can download those required dependencies as well.

When searching for packages, rpmfind can search both the software already installed on the local
system and remote databases, including the databases located at http://rpmfind.net/.

Chapter 7. RPM Management Software

106

Note

The databases at http://rpmfind.net/ are, in turn, created by another utility: rpm2html. Both are covered
in the sections following.

Commonly, rpmfind is used to search for packages by name, though it can be used to search package
descriptions for key words. For example, I might want to find new e-mail clients to install on my
system. I happen to know that one popular Linux e-mail client is Ximian’s evolution, so I search for
that.

The basic syntax for rpmfind follows:

rpmfind package_name

For example, to search for evolution, use a command like the following:

$ rpmfind evolution

Resource evolution already installed

$

Before accessing the Internet, rpmfind searches my local system and finds that I already have
evolution installed, so it does not even bother searching for copies to download. It looks like I’m
forgetful, not remembering that I already have evolution installed. At this point, I might realize that I
already have the software I need, or I might decide to search for a similar application, such as exmh,
another popular Unix e-mail client.

To search for exmh (which in this example has not been installed), use a command like the following:

$ rpmfind exmh

Installing exmh will require 7301 KBytes

To Transfer:

ftp://ftp.redhat.com/pub/redhat/linux/7.2/en/os/i386/RedHat/RPMS//nmh-1.0.4-9.i3

86.rpm

ftp://ftp.redhat.com/pub/redhat/linux/7.2/en/os/i386/RedHat/RPMS//exmh-2.4-2.noarch.rpm

Do you want to download these files to /tmp [Y/n/a/i] ? : a

transferring

ftp://ftp.redhat.com/pub/redhat/linux/7.2/en/os/i386/RedHat/RPMS//nmh-1.0.4-9.i386.rpm

saving to /tmp/nmh-1.0.4-9.i386.rpm

transferring

ftp://ftp.redhat.com/pub/redhat/linux/7.2/en/os/i386/RedHat/RPMS//exmh-2.4-2.noarch.rpm

saving to /tmp/exmh-2.4-2.noarch.rpm

rpm -U /tmp/nmh-1.0.4-9.i386.rpm /tmp/exmh-2.4-2.noarch.rpm

rpmfind and rpm2html

107

$

Here, rpmfind searches my local system for exmh. Since exmh is not installed there, rpmfind searches
the databases at http://rpmfind.net/ and does two things: it finds exmh, and it learns that exmh
depends upon another package: nmh. After double-checking and learning that nmh is not installed
on my local system, rpmfind gives me a choice regarding whether I should download both of those
packages; rpmfind gives me four possible answers:

Do you want to download these files to /tmp [Y/n/a/i] ? : a

My possible answers were:

YYes, do download the files.

NNo, do not download the files.

AGet all. By default, run in Automatic mode, trying to upgrade packages after they are downloaded

IInstall packages after download.

Note

Any user can download packages, but usually only the root user can install packages. Unless you are
logged in as root, rpmfind will likely fail to install the downloaded RPMs.

Because I select the "a" answer, rpmfind downloads all necessary packages to /tmp and tries to
upgrade the packages automatically by running the following command:

rpm -U /tmp/nmh-1.0.4-9.i386.rpm /tmp/exmh-2.4-2.noarch.rpm

In this case, the rpm -U command silently fails, since I am not running it as root and do not have
permission to install software.

If the name of a package is unknown, rpmfind also supports searching by keywords. The --apropos
pattern option tells rpmfind to search through all package descriptions in the databases for the pattern.
If I do not know the names of any e-mail clients, I might use this code for my search:

$ rpmfind --apropos "mail client"

Searching the RPM catalog for mail client ...

1:

ftp://ftp.redhat.com/pub/redhat/linux/7.2/en/os/i386/RedHat/RPMS//netscape-
communicator-4.78-2.i386.rpm

netscape-communicator : A Web browser, news reader and e-mail client.

2:

ftp://ftp.redhat.com/pub/redhat/linux/7.2/en/os/i386/RedHat/RPMS//sylpheed-0.5.0-3.i386.rpm

sylpheed : A GTK+ based, lightweight, and fast email client.

<snip>

364: ftp://ftp.pld.org.pl/PLD-1.0/dists/ra/PLD/SRPMS/SRPMS/sylpheed-0.7.4-1.src.rpm

sylpheed : GTK+ based fast e-mail client

Chapter 7. RPM Management Software

108

From my search, rpmfind returns the following output (with most of the entries edited out for space):

Found 364 packages related to mail client

$

With this command, rpmfind connects to the databases at http://rpmfind.net/ and returns the location
of all packages whose description contains the text “mail client”. Notice that 364 packages are found;
there are lots of e-mail clients available for Linux! That number, however, is slightly misleading. Some
of the packages found are prepared for the distribution I am running (Red Hat Linux version 7.2), but
others are not. Result #364, for example, appears to be the Polish(ed) Linux Distribution 1.0 package
of sylpheed, the same software offered to me packaged for my Red Hat Linux version 7.2 system in
Result #2.

Warning

Use caution when working with rpmfind. By default, it connects to the databases on the server http://
rpmfind.net/ and queries them. These databases are indexes of all RPM-based distributions, and of all
versions of each RPM-based distribution, and of all architectures, and of both source and binary RPMs
for all these distributions!

To help you avoid being overwhelmed with results (such as the 364 results I obtain when I search for
“mail client”), options are available to fine-tune rpmfind’s searches in various ways. Common options
are presented in Table 8-1.

Table 8-1SEARCH OPTIONS FOR rpmfind

Option Result

-v increases verbosity of output (can be used
multiple times)

-s server connects to a specific rpmfind database server

--sources package looks for source RPMs of the package

--apropos key word(s) looks by keyword instead of package name

--dist dist restricts packages to a specific distribution

--latest package finds the most current version of package
available

--upgrade package finds the most current dependencies available for
package

The rpmfind databases that rpmfind searches are created using the utility rpm2html. If you desire,
rpm2html can be used to set up a local mirror of the databases at rpmfind.net or to make a custom
database of locally available RPMs for in-house use.

rpm2html

The rpm2html utility generates HTML Web pages that describe RPM packages. Very simple in
concept, rpm2html has proven very useful over the years.

With rpm2html, each package is displayed as a single HTML page that describes the package using
information much like that returned by the rpm -qi command, covered in Chapter 3, Using RPM . The
HTML page also lists the capabilities the package requires and those it provides. This shows the
needed dependency information. Finally, the page includes a download link to download the RPM file.

RPM Sites On the Internet

109

All packages of the same name, such as the exmh e-mail client, are collected on summary pages.
The summary page tries to list all RPMs for all Linux distributions that provide the given package.
For exmh, for example, the database as of this writing includes 71 versions of the exmh package, for
Conectiva Linux, Mandrake Linux, Yellow Dog PowerPC Linux, and so on. The summary page also
links to the URL in the RPMs that is listed as the home page for the application.

Used together with its database, rpm2html provides a powerful RPM-centric search engine. You can
find more on rpm2html at rpmfind.net/linux/rpm2html/ or just access an RPM search site such as
rpmfind.net.

In addition to rpm2html, the program pdbv creates a set of cross-linked HTML files that list the
packages on your system. Pdbv doesn’t support searching and wasn’t built as a front end for search
sites, so it is simpler than rpm2html. Instead, pdbv just creates a set of HTML pages that list data that
you can query with the rpm command, including the package descriptions, the capabilities required
and provided, as well as all the files in the package.

The primary advantage of pdbv is that it runs relatively quickly to provide you a snapshot of your
system.

7.1.2. RPM Sites On the Internet
In addition to the command-line RPM search tools, a number of Web sites provide handy front ends
to databases of available packages. These Web sites make it easy to query for packages and also
provide snapshots of what is happening in Linux development, especially with the sites that list
recently created RPMs.

The following sections list some of the more popular sites.

Note

As with anything on the Internet, sites come and go. I’ve used rpmfind.net for years, but it is always
possible that any of these sites may suddenly disappear.

7.1.2.1. rpmfind.net
The rpmfind utility is associated with an online database available at www.rpmfind.net. You can search
this site and see the results in the same format as that created by the rpm2html utility. In essence,
this site acts as an HTML front end to the rpmfind query commands. By providing a search engine
accessible from a Web browser, instead of the command line as used by the rpmfind utility, the
rpmfind.net site is easy to search and also displays the data in an easier-to-read format.

Use the rpmfind command when you know you want to install something. Use the rpmfind.net Web
site when you want to browse through the lists of available RPMs.

Note

You can download the rpmfind command RPM from the rpmfind.net site.

7.1.2.2. freshrpms.net
The site name,freshrpms.net, is a play on the popular but oddly named Linux site freshmeat.net.
The freshmeat.net site provides listings of newly-updated applications for Linux and other operating
systems. The freshrpms.net site provides a similar service devoted to freshly-made RPMs.

Note

Chapter 7. RPM Management Software

110

You don’t always want the most recently made RPMs. Sometimes it's good to wait a while and see if
others have faced problems with a given RPM before downloading it.

One of the best features of the freshrpms.net site is that it also provides links to the RPM spec files for
the packages it references. This is a very useful source of examples when you try to build RPMs.

Cross Reference

See Chapter 9, Working with Spec Files for more on RPM spec files.

7.1.2.3. RPM PBone Search
The site http://rpm.pbone.net/ provides a database of RPM packages you can search. This site
also lists quite a few recently created RPMs. In fact, much of the focus here lies in finding the latest
updates to the applications you run.

The feature I like most about the PBone search is the ability to specify which Linux distributions to
search by using a set of check boxes. Although in theory most Linux RPMs should work on most Linux
distributions, I prefer to get something made for and tested on my version of Linux.

7.1.2.4. Other Sites
Table 8-2 lists additional sites where you can find RPMs. As with all listings of Internet sites, these may
come and go.

Table 8-2MORE RPM SITES

Site Holds

http://plf.zarb.org/ The Penguin Liberation Front has RPMs that
for legal reasons cannot be included in the
Mandrake Linux distribution.

www.math.unl.edu/~rdieter/Projects/ Rex Dieter’s RPM site

www.rpmhelp.net/ Mandrake Linux RPMs

www.aucs.org/rpmcenter/ Edwin Chan's Red Hat RPMs

www.owlriver.com/projects/links/ Owl River Company RPMs

7.2. Graphical RPM Management
Once appropriate RPMs have been obtained, they have to be installed before the application they
provide can be used. You can use the rpm command-line utility to do this. The rpmfind utility also has
the capability to launch the rpm utility automatically to install any software located. In addition to these
two tools, however, several graphical applications are available that provide basic RPM package-
management capabilities. Most of these programs offer easy-to-use GUIs that can be used to install
and uninstall packages, to query packages, and to verify installed packages.

Even though Linux and Unix fans generally aren’t bothered by command-line tools such as rpm, many
newcomers to Linux fret over the seeming difficulty of the command line. They are more used to
graphical applications and, in many cases, are more productive in a graphical environment. Keeping
with the Linux tradition of freedom of choice, you can use the command-line tools such as the rpm
commandor pick from a variety of graphical tools.

Nautilus

111

7.2.1. Nautilus
Nautilus provides a visually appealing file manager that is part of the GNOME desktop. Nautilus acts
as a normal file manager that can also display some types of files, such as images. In addition, you
can launch applications that Nautilus knows about when you double click files. Figure 8-1 shows
Nautilus in action.

Insert 54965-0 fg0801.tif

Figure 8-1: Browsing RPM files with Nautilus.

If you double click an RPM file (a file ending with the extension .rpm), Nautilus will install the RPM file.
First, though, Nautilus will prompt you for the root password, since you must be logged in as root to
install RPMs. Figure 8-2 shows Nautilus prompting for a password.

Insert 54965-0 fg0802.tif

Figure 8-2: You must be logged in as root to install packages.

After some time processing, you should see the Completed System Preparation window, as shown in
Figure 8-3.

Insert 54965-0 fg0803.tif

Figure 8-3: Installing RPM files with Nautilus.

When you install RPMs with Nautilus, it really runs the Red Hat Package Management tool.

Note

Nautilus only supports RPM functionality starting with Red Hat Linux 8.0. This functionality may not be
supported in other versions of Linux.

7.2.2. Red Hat Package Management
The redhat-config-packages application (say that three times fast) comes new with Red Hat Linux 8.0.
You can use the Python program in this package to manage the packages that come with Red Hat
Linux, using an interface that is very similar to the Red Hat Linux installation program. This similarity
may make it easier for many users to manage their packages, although I found the program a bit short
on explanations.

To run this program, you first have to do a bit of searching to find it. It appears under the System
Settings menu from the main Red Hat Start menu under the default Bluecurve desktop. Select the
Packages choice to launch this program. You can also start the program from the command line with
the following command:

redhat-config-packages

This program takes a long time to read in all the information and start up. Once started, the interface
provides the same categories and much the same look as the Red Hat Linux installer, as shown in
Figure 8-4.

Insert 54965-0 fg0804.tif

Figure 8-4: The redhat-config-packages package manager.

Chapter 7. RPM Management Software

112

The packages tool divides the packages into groups. Inside each group, the packages are divided into
two sets: standard and extra packages. (Red Hat places the packages into these categories, striving
to make a reasonable division among the many packages that come with Linux.) If you click the check
box for a group, the tool will queue up all the standard packages within that group for installation. If
you uncheck a check box for a group that was checked before, the tool will queue up all the installed
packages in that group for removal, both standard and extra.

Warning

Installing or removing all the packages in a group when you don’t know what is in the group is not a
good idea.

To delve into a group and see what is inside, click the Details link associated with that group. Clicking
the Details link will bring up a window where you can check individual packages for installation and
uncheck individual packages for removal. Figure 8-5 shows the details of the Web Server group.

Insert 54965-0 fg0805.tif

Figure 8-5: Package details for the Web Server group.

Once you have selected all the packages you want to install, and unselected all the packages you
want to remove, click the Update button on the main window of the package-management tool. After
some processing, you should see the Completed System Preparation window, which lists the amount
of disk space required for the new packages and the amount that will be freed by the packages to be
removed. Figure 8-6 shows this window.

Insert 54965-0 fg0806.tif

Figure 8-6: The Completed Systems Preparation window.

Click the Show Details button to see a complete list of all the packages to be installed and removed.

Warning

If the packages you choose to install depend on any other packages, the package-management
tool will automatically add these packages to the list to be installed. More important, if any packages
installed on your system depend on any of the packages you have marked for removal, the tool will
add those additional installed packages to the list to be removed. Always examine the Show Details
window to see what will really be installed and removed.

Figure 8-7 shows the window with the package details.

Insert 54965-0 fg0807.tif

Figure 8-7: The Show Details window.

The package-management tool worries me. It has an absolutely beautiful look, but it tries to do too
much, especially when removing packages. Always use this program with care. I much prefer to just
launch it with single packages from the Nautilus file manager.

7.2.3. KPackage
One popular graphical RPM management tool is KPackage, supplied with the KDE Desktop. (You
can find this product at www.kde.org). KPackage offers basic package-management functionality. It
can install and uninstall packages and display information about installed and available packages’

Gnome-RPM

113

contents and headers. In addition, KPackage supports a wide variety of package formats in addition to
RPMs. Be aware, however, that KPackage cannot automatically resolve dependencies. When you are
installing new software packages, any dependencies required by that software must first be manually
installed.

When started, KPackage presents a basic two-paned interface.

The left-hand panel lists Installed packages already on the system, Updated packages available to
update the system, New packages available for installation, and All packages (both installed and
available for installation/upgrade). When displaying package lists, KPackage organizes the displayed
packages into categories based on their group.

The right-hand panel lists information about the package currently selected in the left-hand panel.
Information displayed includes the package Properties, listing the package’s header, and the File List
of files that package owns. Figure 8-8 shows this panel on the right side of the interface.

Note: old fig 8-8 deleted; renumber all remaining to match. Chapter has been changed to reflect
deletion.

Insert 54965-0 fg0808.tif

Figure 8-8: The KPackage interface, showing properties of the selected package

After packages have been selected, they can be installed or uninstalled, as shown in Figure 8-9

Insert 54965-0 fg0809.tif

Figure 8-9: KPackage installs the selected package on your command.

In addition to supporting RPM, KPackage can be used on systems that use other packaging methods.
Current versions of KPackage support Debian’s dpkg and the BSD projects’ package formats as well
as RPM.

7.2.4. Gnome-RPM
The GNOME Desktop (www.gnome.org) provides another graphical RPM-management tool,
Gnome-RPM. Also known as gnorpm, Gnome-RPM is very similar to KPackage in terms of its basic
functionality, although Gnome-RPM can manage only RPMs.

When started, Gnome-RPM presents a hierarchical list of installed packages, arranged by group, as
shown in Figure 8-10:

Insert 54965-0 fg0810.tif

Figure 8-10: The main Gnome-RPM window.

After a specific package has been selected, you can can query to see its details, as shown in Figure
8-11:

Insert 54965-0 fg0811.tif

Figure 78-11: Querying the details for a package.

With Gnome-RPM, you can also filter the list of packages to see only the list of uninstalled RPMs, as
shown in Figure 8-12.

Chapter 7. RPM Management Software

114

Insert 54965-0 fg0812.tif

Figure 78-12: Filtering to see only the uninstalled packages.

Like KPackage, when installing new software, Gnome-RPM lacks the ability to automatically install any
dependencies needed by that software.

7.3. Extending RPM Management
RPM makes it very easy to install and uninstall software from systems. One simple command installs
an entire application onto the computer, and another removes all files associated with an application.
Using RPM to install and uninstall software can become tedious in some situations, however. Manually
installing software on one system is no great task, but what if that same software package needs to
be installed on all the computers in the department? Or on all the computers in a company? Suddenly,
that one rpm -i command has become a major chore!

Similarly, keeping one system up-to-date with the latest vendor errata, although an extremely
important administrative task, is not terribly time-consuming or difficult — simply download all the
errata and associated packages from the vendor; then use the command rpm -Fvh to install the
packages on the system, freshening all installed software with the latest updates of that software.

If several machines are being managed, though, the task becomes slightly more difficult. Now the
vendor errata and packages must be manually copied to each machine, and rpm -Fvh must be run
on each machine to update it. If many machines are being managed, and those systems are running
different versions of the operating system (so that they require different errata), the task becomes
even more complicated. Separate errata packages must be downloaded for every operating system
version in use; then the appropriate errata collections must be pushed to each machine and manually
freshened. To make life as a system administrator even more frustrating, sometimes vendor-supplied
errata cannot be installed using the freshen option. A package supplied as one RPM in the initial
operating-system release might be split into two RPMs for the errata, for example. When this happens,
freshen cannot be used. Instead, the administrator must determine what software is currently installed
on the system, and the errata for that software must be manually installed. Typically, this involves
several rounds of comparing output from rpm -qa with the list of current errata, using rpm -Uvh to
upgrade only the appropriate errata for that system.

Worse yet, errata updating should ideally be done on an automatic basis. While rpm commands can
be scheduled using system utilities such as cron or at, obviously this cannot be done when the rpm
commands to be scheduled need to be interactive.

Installation of new packages can pose problems as well. New software will often have logical
dependencies upon other software that is also not currently installed. Although RPM does track
software dependencies, it does not magically find all dependencies an application needs, nor does it
automatically install them along with the initial application. Instead, all required “helper” applications
must be searched out and manually installed. Then the desired software can be installed.

These and similar problems are very common in the real world. Typically, system administrators
manage as many as 200 or more systems. Manually logging into 200 systems and executing an rpm -i
command every time another application is needed is not practical. Even when managing one system,
downloading errata and manually installing it regularly quickly becomes tedious.

Like any regular system-administration task, it should be automated. When installing new software
on machines, managing dependencies and downloading and installing required support software
becomes tiresome as well.

AutoRPM

115

To aid with these common problems, a variety of helper applications are available for RPM. These
management aids can perform functions such as automatically managing dependencies. When an
application is being installed using one of these helpers, the utility also finds and installs any required
dependencies. Similarly, when errata are being installed, these management aids can automatically
determine which errata are needed by the current system, even in situations in which rpm -F does
not work. Some of these tools can even be used to manage clusters of computers. Running one
command applies the RPM install or delete on the entire group of machines. All of these commands
are designed with scriptability in mind, making them perfect for use automatically via tools such as
cron or at.

7.3.1. AutoRPM
One popular tool to lessen the work involved with administering RPM-based systems is AutoRPM.
Written by Kirk Bauer, AutoRPM is available under a free MIT-style license from the home page
www.autorpm.org.

A Perl script, AutoRPM provides several features that make it especially useful. First, it can create
local mirrors of RPM repositories. Typically, this feature might be used to create a local archive of
errata for a Linux distribution. AutoRPM can also compare all currently installed RPMs against a
list stored elsewhere. This list can be either an FTP site or a directory on the local system. After
comparing the currently-installed RPMs against the list, AutoRPM can then update any packages from
the list site that are newer than what is installed on the local system. This way, you can define one site
or directory as the master site of the package versions that need to get installed on all systems and let
AutoRPM ensure that all computers on your network are up to date.

Together, these two functions make AutoRPM very convenient for keeping systems current with all
errata the vendor releases. They can also be used to create a method of distributing software to a
network of systems. For example, every workstation in the department can run AutoRPM, configured
to watch a common directory on a local NFS server. Installing new software on every workstation in
the department occurs simply by copying an RPM of the software into that directory, letting AutoRPM
do the rest of the work.

AutoRPM is designed to be used both automatically from cron and interactively from the command
line. By default, AutoRPM runs via a nightly cron job and downloads all updates for software currently
installed on the system. It then stores these updates in a local directory, typically /var/spool/autorpm,
and e-mails an administrator a notification on the new updates. The administrator can then log onto
the system and manually install the updates using the rpm command. AutoRPM can also be easily
configured to install automatically any new packages it downloads. If AutoRPM is so configured, the
system administrator does not even have to log in and run rpm commands to keep the system up-to-
date!

In interactive mode, AutoRPM provides a basic set of commands, listed in Table 8-2.

Table 8-2Basic AutoRPM commands

Command Usage

? displays help on the various commands

Help displays help on the various commands

Info displays information about an RPM

Fullinfo displays complete information about an RPM

Install installs RPMs onto the system

Chapter 7. RPM Management Software

116

Add adds RPMs to the queue of RPMs to be
processed

Remove deletes RPMs from the queue of RPMs waiting to
be processed

List displays all RPMs currently in the queue waiting
to be processed

Cd changes the local directory

Auto executes commands defined in the system-wide
configuration file

Set displays or modifies current AutoRPM settings

Abort exits without saving changes

Exit Exits and saves changes

The commands that manipulate RPMs (such as install, used to install an RPM) accept as arguments
both paths to RPM files on the local system, and also URLs pointing to RPMs on an FTP repository.
In addition, they support wild cards and directory accesses, so a command such as install ftp://
ftp.redhat.com/pub/redhat/linux/updates/current/* can be used to install all errata for the current
release of Red Hat Linux.

In addition to interactive mode, AutoRPM provides a noninteractive mode, suitable for use through
cron. In noninteractive mode, invoked by the command autorpm --notty auto, AutoRPM consults the
configuration file /etc/autorpm.conf to decide what to do. By default, /etc/autorpm.d/autorpm.conf is
configured to download, but not automatically install, all errata for the release of Red Hat Linux running
on the local system. Editing this file makes it possible to use AutoRPM to download all errata — or
errata for other Linux distributions — or to install errata automatically once downloaded.

Typically, AutoRPM is used to automate installation of errata updates and other software on all
machines in the enterprise. To do this, one machine is selected to serve as a file server. On it,
AutoRPM is configured to download and install all errata. The directory where the errata are stored
on that server is then exported to the other machines in the enterprise, which also run AutoRPM.
These other machines have AutoRPM configured to install all files that the file server exports. Using
a configuration such as this, all machines in the enterprise get all security updates automatically
installed. In addition, installing a desired new software application on all hosts in the enterprise can
be done simply by copying an RPM of the application onto the file server, making it available for the
AutoRPM nightly updates to access and install automatically.

7.3.2. AutoUpdate
AutoUpdate, written by Gerald Teschl, is another Perl script that can be used to automate
RPM downloads or installations. Available freely under the terms of the GNU GPL from
www.mat.univie.ac.at/~gerald/ftp/autoupdate, AutoUpdate is very similar to AutoRPM in terms of both
functionality and potential applications. Unlike AutoRPM, AutoUpdate offers no interactive capability.
However, AutoUpdate does have the capability to manage dependencies correctly; when using
AutoUpdate to install software that depends upon other uninstalled software, AutoUpdate attempts to
resolve the dependencies and to install all necessary software packages.

AutoUpdate bases all decisions about what software to download or install upon its configuration file, /
etc/autoupdate.d/autoupdate.conf. By default, AutoUpdate provides several additional configuration
files pre-defined for downloading updates for the most popular RPM-based Linux distributions (Red

The Red Hat Network and up2date

117

Hat Linux, Mandrake Linux, Caldera/SCO OpenLinux, and SUSE Linux). The autoupdate.conf file can
be modified to configure AutoUpdate to install software automatically.

Table 8-3 lists the five commands that compose all the utilities provided by AutoUpdate:

Table 8-3AutoUpdate commands

Command Usage

autodld downloads updated versions of all installed
software

autoget downloads specific RPMs from remote sites

autoupd installs more recent versions of currently installed
software

autoins installs specific applications

automerge merges new RPMs into an existing directory of
RPMs, removing any old versions

autopurge removes old RPMs from an existing directory of
RPMs.

These tools can access remote files by using a variety of methods. Like AutoRPM, AutoUptodate
can download files if given an FTP URL. AutoUpdate can also access HTTP URLs and local files.
Its additional dependency-tracking functionality and support for additional file-access methods make
it suitable for use in cases where AutoRPM might be inappropriate. AutoUpdate cannot be used
interactively, however, making AutoRPM more useful for nonautomated purposes.

7.3.3. The Red Hat Network and up2date
Some vendors of RPM-based Linux distributions also provide utilities that can help with management
of the distributions they create. Red Hat has created two complementary products, the Red Hat
Network (RHN) and up2date, which together provide much the same functionality for managing Red
Hat Linux installations as tools such as AutoUpdate and AutoRPM, as well as offering more advanced
features.

Red Hat Network is a subscription-based service offered by Red Hat Red Hat Network makes
software available for installation via the network. (A free evaluation is also available.) After registering
machines with Red Hat Network, administrators can pull updates or new software for installation to
those registered machines. In addition, administrators have access to a Web-based administrative
console from which they can view the systems they manage and can push software out to those
systems.

Red Hat offers two tiers of access to Red Hat Network. Basic Service subscriptions to Red Hat
Network provide the ability to manage single systems. Multiple machines can be subscribed by the
same administrator for Basic Service level Red Hat Network access, but they must all be managed
independently. The administrator must push out errata to each machine separately. Workgroup
Service subscriptions provide the same functionality as Basic Service subscriptions, but they also
provide the ability to group multiple machines for simultaneous administration. All errata updates for
all machines subscribed to Workgroup Service can be pushed out by a single action, for example.
Furthermore, Workgroup Service subscriptions can allow management by multiple administrators if
desired, making it possible for large organizations to share responsibilities among administrators.

When using Red Hat Network to manage machines with Workgroup Service subscriptions, Red Hat
also offers two optional services: Red Hat Network Proxy Server and Red Hat Network Satellite. The

Chapter 7. RPM Management Software

118

Red Hat Network Proxy Server is, as its name suggests, a proxy server for the Red Hat Network.
Using it, errata pushed out via Red Hat Network is downloaded by the organization (only once) to a
central server in-house. All machines in that organization subscribed to Red Hat Network get their
updated software from that in-house proxy server, significantly reducing the network bandwidth
requirements needed to keep large organizations up to date.

In addition, the Red Hat Network Proxy Server can be used to provide all subscribed machines
with software not provided with Red Hat Linux. Custom “channels” of supplemental software can
be created on the Proxy Server, and machines can be subscribed to those channels as desired.
Using this feature, different departments in the organization with different software needs can create
independent channels for each department, ensuring that machines get only the software needed
on them. Similarly, distinct channels can be created for separate classes of machines, ensuring that
servers get only software appropriate for server machines and that desktops only get only software
that desktop machines need.

The Red Hat Network is normally centrally administered through Red Hat. Machines subscribed to
the Red Hat Network have a system profile on file with Red Hat that details the system’s essential
configuration information (what software is installed on it, what CPU architecture it contains, and
so forth) needed to determine which software errata are appropriate for that system. Similarly, the
Web console through which machines subscribed to Red Hat Network can be administered is also
located on a Red Hat server. Customers wishing to use Red Hat Network services, but not wanting
the dependency upon Internet access to Red Hat, can create an in-house Red Hat Network by using
the Red Hat Network Satellite. This solution is often practical for customers who need to keep system
information confidential or for customers whose systems are not able to access the Internet.

Red Hat provides several interfaces for administering machines subscribed to the Red Hat Network.
A Web-management console is available at https://rhn.redhat.com/. Administrators of machines
subscribed to any level of the Red Hat Network can simply log into this Web site and perform a variety
of package-management operations from their Web browsers. In addition to viewing other things,
administrators can see what software is currently installed, select and install Red Hat Linux errata or
new software, or schedule a time for automatic installation of Red Hat Linux errata.

When using Red Hat Network, rhnsd is a client-side daemon that should be run on subscribed
systems. It periodically launches a helper utility, rhn_check, which connects to the Red Hat Network
servers and checks for any actions (such as a scheduled installation of errata) that an administrator
has selected in the Web console. If any actions have been scheduled for that client machine,
rhn_check on the client initiates those actions. By default, rhnsd runs rhn_check every two hours. This
time can be increased to check for configuration changes as frequently as every hour if necessary.

In addition, Red Hat provides client-side tools that can be used in a more interactive fashion to
connect to the Red Hat Network from subscribed systems. The up2date program provides a graphical
and command-line tool that can be used to install packages from Red Hat Network servers. When
installing a new package, up2date automatically installs any necessary dependencies the package
requires, making it a very convenient tool for adding software to the system. up2date can also be run
in update mode, thus telling it to install all updates available for the software already installed on the
system. Commonly used options with up2date include those listed in Table 8-4.

Table 8-4Options for the up2date command

Option Usage

--configure Start a dialog for configuring up2date options

-d Download packages but do not install them

Current

119

-f Force packages to be installed, even if they have
been marked to be skipped

-i Download and install packages

-l List available updated versions of already
installed packages

--showall List all available packages, including packages
not currently installed at all

-k List local directories containing packages

--nosig Disable GPG package signature checking

--src Download both source and binary RPMs

--nosrc Do not download source RPMs

-p Update the list of installed packages associated
with this computer in the Red Hat Network
database

--whatprovides Ask the RHN servers which packages will
resolve the listed dependencies

--solvedeps Ask the RHN servers which packages will
resolve the listed dependencies, then downloads
and installs those packages

--tmpdir Specify the temporary directory to which
packages should be downloaded

-u Update all software currently installed on the
system to the latest available version

--nox Short for No X, this disables the X-based GUI,
instead using only the command-line interface

-v Provide more verbose output

7.3.4. Current
The up2date command, the Red Hat Network client software, is open-source software released by
Red Hat under the terms of the GNU GPL. Red Hat Network Proxy Server and Red Hat Network
Satellite, the server applications with which up2date interacts, are not freely available, open-source
applications. For this reason, an effort is underway to develop servers available under the terms of
the GNU GPL that can be used with up2date clients. The main program in this effort is called current,
which refers to keeping your systems current.

The current server can be downloaded from http://current.tigris.org. Although not yet as functional
as Red Hat Network Proxy Server or Red Hat Network Satellite, current can already be used to
create a RPM repository from which up2date-using clients can retrieve and install software. More
advanced features, such as support for multiple “channels” of software, will be added to current in
future releases.

7.3.5. urpmi and RpmDrake
Mandrake provides a set of software similar to the combination of up2date and Red Hat Network
or current that can be used with the Mandrake Linux distribution. Links to the source code for the
Mandrake applications can be found at www.linux-mandrake.com/cooker/urpmi.html. This suite of

Chapter 7. RPM Management Software

120

applications is typically referred to as urpmi and includes both the urpmi command and several helper
applications. urpmi itself is a command that acts as a wrapper around the rpm command. When
given the name of a package to install, urpmi determines what dependencies, if any, required by
the application are not already resolved and offers to install the packages necessary to fulfill those
dependencies.

When installing packages, urpmi can install from a variety of sources: FTP repositories, Web
servers, local or NFS directories, and removable media such as CD-ROMs. The helper application
urpmi.addmedia is used to add package sources, and the corresponding utility urpmi.removemedia is
used to remove package sources no longer desired.

Mandrake’s urpmi program includes one very handy feature. It comes with an autoirpm helper utility
that can be used to configure the system to install packages on demand. This is done by running the
command autoirpm.update-all, an application that scans all packages available for installation via
urpmi. For every package available through urpmi, autoirpm.update-all determines what executable
programs it provides, and it creates a symbolic link from that executable’s name to the autoirpm script.
Attempting to execute such a symbolic link executes autoirpm, which in turn automatically uses urpmi
to install the associated package. The result: on-demand installation of packages when users on the
system attempt to execute the programs that those packages provide.

Two different interfaces are available for urpmi. The urpmi command starts up urpmi in command-line
mode, and the gurpmi command (or urpmi --X) starts urpmi in a graphical X-based mode. In addition,
Mandrake provides a more full-featured graphical application: RpmDrake. RpmDrake provides the
same package-management capabilities as urpmi, including the capability to install all required
dependencies whenever installing any new packages.

7.3.6. apt-rpm
Another free RPM management utility is available that provides many of the features of both vendor
solutions such as up2date or urpmi and of third-party utilities such as autoUpdate or KPackage. This
tool is apt-rpm, a port of the Debian Project’s excellent apt (Advanced Package Tool) software.

The Debian Project (www.debian.org/) is a nonprofit volunteer group that develops a Linux distribution,
Debian GNU/Linux. The group uses a different package format, dpkg, which was developed
independently of and simultaneous to Red Hat’s creation of RPM. The two formats, dpkg and RPM,
are very similar in terms of utility and functionality. In addition to having created a package format,
the Debian Project later developed a collection of software, apt, which could be used to manage and
install dpkg-format software. And, since Debian distributions are typically installed over the Internet,
this apt software has to supply advanced distributed package management functionality.

In many respects, Debian’s implementation of apt is very similar to the functionality provided by Red
Hat’s up2date/Red Hat Network products or Mandrake’s urpmi software. On Debian systems, apt is
a client tool used to select and install new software packages or to update existing packages already
installed on the system. To do this, it accesses a user-configured list of resources that supply new
packages; these resources are typically the Debian Project’s FTP or Web servers, though they can
also be CD-ROMs or local or remote file systems. For apt to be able to download packages from a
resource such as a CD-ROM or an FTP server, that resource must supply two things: the software
packages being downloaded and a database supplying metadata about all the packages in the
repository. These resource databases are essential for apt to operate. For this reason, apt can only be
used to update systems from apt-capable repositories.

Although apt was created by the Debian Project and designed for dpkg-format software packages,
nothing about apt requires that it inherently be usable only with dpkg-format packages. Because

apt-rpm

121

of this, and because of its powerful capabilities, Conectiva, a Brazilian Linux distribution vendor
(www.conectiva.com), extended apt to support management of RPM packages in addition to dpkg
packages. Conectiva’s work, commonly referred to as apt-rpm, makes the apt client software available
for use on any RPM-based Linux distribution. Conectiva also provides its customers with access to
apt-capable FTP servers. A related project, apt4rpm (http://apt4rpm.sourceforge.net/), supplies the
necessary utilities that can be used to make any RPM repository apt-capable. By creating apt-capable
servers using apt4rpm and then installing apt-rpm on the client systems, any RPM-based distribution,
such as Red Hat Linux, Mandrake Linux, Caldera/SCO OpenLinux, or SUSE Linux, can then be easily
managed using apt.

Note

The freshrpms.net site, mentioned previously, provides a touted apt repository.

Administrators managing multiple dispersed machines as well as those used to Debian administration
often find it useful to configure their machines to use apt; its dependency tracking is far better than
any other tool, except for Red Hat’s up2date/RHN combination. To use apt, administrators must
install it on their machines and have access to an apt-capable RPM repository for the distribution they
use. Several public FTP sites that support apt are now available for most of the major RPM-based
distributions. Also, the administrator can create another apt-capable repository.

Configuration of machines to use apt is simple. The apt and libapt RPMs simply need to be installed.
Although binaries are sometimes available, the best success can usually be obtained by building
binary RPMs from the latest Conectiva apt SRPM (source RPM), available at ftp://ftp.conectiva.com/
pub/conectiva/EXPERIMENTAL/apt/.

Once apt and libapt RPMs are installed, the sources.list file in /etc/apt needs to be modified to
reference the apt-capable software site that will be used. For example, to configure a machine to
access the apt-capable Red Hat Linux 7.2 software distributed by the Tuxfamily.org server, the /etc/
apt/sources.list file needs to list:

rpm http://apt-rpm.tuxfamily.org/apt redhat-7.2-i386/redhat os

rpm http://apt-rpm.tuxfamily.org/apt redhat-updates-7.2/redhat os

These two lines, respectively, access the Red Hat Linux 7.2 and Red Hat Linux 7.2 errata RPMs being
served by the system apt-rpm.tuxfamily.org. If you also want access to source RPMs, the following
lines are necessary as well.

rpm-src http://apt-rpm.tuxfamily.org/apt redhat-7.2-i386/redhat os

rpm-src http://apt-rpm.tuxfamily.org/apt redhat-updates-7.2/redhat os

In addition to, or instead of, using public apt-capable servers, many sites want to create their own apt
servers. If apt is being used to manage all the machines in the enterprise, a custom apt server might
be needed that contains apt-accessible RPMs of all the custom software used in the enterprise. This
can be done using the tools provided by the apt4rpm package (http://apt4rpm.sourceforge.net).

Once apt has been installed on clients, and the clients have been configured to access an apt-
capable server, keeping systems updated is simple. The command apt-get update updates the client
system’s apt database of available software, after which the command apt-get upgrade upgrades all
currently installed software to the latest version available in the software repository. By listing a site
that provides vendor errata updates in /etc/apt/sources.list and then setting up a nightly cron job to run
the apt-get upgrade command, administrators can be sure that client systems always have the latest
errata installed. You can use a similar technique to ensure that all client systems are always up to date

Chapter 7. RPM Management Software

122

with the latest custom in-house applications. To do this, set up your own apt server and ensure that the
latest custom applications are placed on the apt server.

In addition, apt simplifies interactive installation of RPMs on systems that are using it. The command
apt-get install package retrieves the named RPM from the apt-capable software repository and
installs it. If the package requires any dependencies that are not already resolved, apt will ask for
confirmation, then download and install the package and all dependencies. Similarly, apt-get remove
package uninstalls the named RPM. If any other packages depend on it, it will prompt for confirmation,
then uninstall the named RPM and all of its dependencies.

In addition to these command-line utilities, several graphical front-end tools for manipulating apt are
currently being ported for use with apt-rpm. Because of its ease of use for automating installation of
system errata and necessary custom software, and because of the excellent dependency tracking
it provides for interactive installation and uninstallation of software, apt-rpm can be excellent for
managing RPM-based systems.

7.3.7. The poldek
Also similar to the Debian apt tool, a utility called the poldek works like apt-get. The poldek was
designed to quickly scan through dependencies and install a number of packages at once. You can
specify all the packages to install in a file.

The poldek automatically downloads any needed dependencies. The poldek can download files over
the Internet and also help create the packages for storage on CD-ROMs. The poldek optimizes the set
of packages to reduce the number of times users have to switch CDs.

Cross Reference

For more on the poldek, see poldek.pld.org.pl.

7.4. Summary
This chapter has covered a number of tools for finding packages in RPM format, as well as tools to
help manage the RPMs on your system. The rpm command does a great job of installing, removing,
and upgrading packages. You can use it or choose from one of the many graphical RPM management
tools shown in this chapter.

The rpmfind utility helps find RPM packages on Internet servers. You can use rpmfind to find the latest
version of the packages installed on your system.

The Nautilus file manager allows you to browse files on disk, and it installs any RPM files you double-
click.

Red Hat Linux 8 comes with a new package-management tool available from the System Settings
menu. Be careful with this tool, though, as it automatically installs--and removes--dependent
packages.

AutoRPM and AutoUpdate provide utilites that you can run periodically to ensure that your systems
are up to date. The Red Hat Network and up2date also provides this capability.

The Debian GNU/Linux apt system provides many of the same capabilities as RPM, along with the
network-updating capabilities of up2date and the Red Hat Network. You can use special apt packages
that adapt apt for RPM-based Linux distributions and get the best of both the RPM system and the apt
system.

Summary

123

The next chapter starts the major section on creating RPMs. The RPM system reduces a lot of the
burden of administering Linux systems. You can take advantage of this when building any sort of
software for distribution--or even when managing your own system.

124

Chapter 8.

125

Creating RPMs: An Overview
This chapter covers:

• Preparing to build RPMs

• Planning for RPMs

• Explaining the build process

• Using build files

• Seeing the results

• Verifying your RPMs

Thus far in this book, all the commands presented have been used to manage or query packages.
With this chapter, though, you start creating RPMs of your own. Even if you do not produce
applications on your own, you may want to create RPM packages out of software you use, if only for
the ease of management that the RPM system provides.

Creating RPMs allows you to create a consistent set of applications for use on all systems in
your organization and easily manage those applications. You may create RPMs of applications
developed in house or RPMs of applications developed elsewhere that you need to customize
for your environment. Making RPMs of the customized applications reduces work and makes the
customizations consistent.

This chapter introduces the RPM system from the point of view of creating RPMs and demonstrates
the steps and planning necessary to make your own packages. As such, this chapter introduces the
RPM-building topics covered in depth in the remaining chapters in this part.

8.1. Preparing to Build RPMs
The RPM-building task starts with gathering all the material you want to bundle into an RPM package
and then defining the RPM directives to make your package. The final steps are to build and test an
RPM. This sounds easy, and for the most part it is fairly straightforward.

The main problems arise when you try to define the many RPM directives for your package. In
addition, some of the elements in an RPM can be complex, such as upgrade scripts.

The main tasks in building RPMs are:

1.Planning what you want to build

2.Gathering the software to package

3.Patching the software as needed

4.Creating a reproducible build of the software

5.Planning for upgrades

6.Outlining any dependencies

7.Building the RPMs

Chapter 8. Creating RPMs: An Overview

126

8.Testing the RPMs

The sections in this chapter cover the initial planning stages and provide an overview of the process of
building RPMs. The remaining chapters in Part II go in depth into the process of building RPMs.

8.1.1. Planning what you want to build
The first step in the entire RPM-building process is simply to decide exactly what you want to make
into an RPM. Is this an application, a programming library, a set of system configuration files, or a
documentation package? If this is an application, is it customized or patched? Think these issues over
and decide what you want to package as an RPM.

In most cases, you want to create both a source package and a binary package containing the built
sources. You need a binary package because that holds the RPM you want to install on other systems.
You need the source package so you can recreate the binary package at any time. And, if the sources
get updated, you can quickly make a new binary RPM from the updated sources if you have already
defined a source RPM.

Most packages start with a source RPM, although you have the option to skip making a source RPM.
It is a good idea to make the source RPM, however, because it makes it easier to reproduce the final
binary RPM. Once of the key goals of the RPM system is to allow for reproducible builds, and making
source RPMs is just one step to help towards this goal.

Creating a source RPM also allows you to transfer the entire set of sources for a package to another
system, since the source RPM is just one file and it contains all the program sources along with the
instructions, called a spec file, for building the binary RPM. Furthermore, creating a source RPM
makes it easier to create binary RPMs on different processor architectures or different versions of
Linux.

Note

Not all programs are portable to multiple-processor architectures. But many Linux programs can
simply be recompiled on another architecture to make a binary program for that architecture. That's
because there are a lot of common APIs for Linux applications and because most programs are not
processor dependent. This is not true of all programs, so your mileage may vary.

Source packages are not that hard to make, and they provide a single package, and single file, that
holds all the sources necessary to build your binary package. In addition, once you have a source
RPM, it is very easy to build a binary RPM.

Binary packages are likely the real reason you want to make an RPM. You can package an
application, a programming library, or almost anything you want. Armed with a binary RPM, you can
transfer one file to another machine and install the application there, taking full advantage of the RPM
system.

8.1.2. Gathering the software to package
Whether you are writing your own software or merely packaging software found elsewhere, the next
step is to gather the software you want to bundle into an RPM. This includes the applications or
libraries you want to package, as well as the program source code.

In general, you’ll be doing one of three things:

*Packaging your own software

Creating a reproducible build of the software

127

*Packaging someone else’s software

*Packaging someone else’s stuff after first customizing or patching the software

In all cases, you need to gather the software together and decide whether you want everything to go
into one bundle or a number of bundles.

As covered in Chapter 1, Introduction to RPM , a major tenet of the philosophy behind RPM is to
start with pristine—unmodified--sources. You may need to patch or customize the sources for your
environment, but you can always go back to the original sources.

Starting with pristine sources provides a number of advantages, including the following:

*You clearly separate any changes you have made to the software from the original software.

*You make it easier to get an upgrade of the original sources, since your changes are cleanly
separated from the original sources. With each new release of the software, you can determine
which of your changes, if any, are still needed. This is especially important if you are packaging an
application created by another organization into an RPM.

*You have a reproducible way to recreate everything in the package. Since you start with unmodified
sources, you can always go back to the beginning of the process and start again. Thus, your RPMs
don’t depend on any actions taken beforehand, such as patching, that you may later forget to do
because the steps are not automated as part of the RPM-building process.

Start with pristine sources; then patch as needed. A patch is an automated set of modifications to the
source code. Use the diff command to build a patch and the patch command to apply the patch (that
is, to modify the source code). Keep the original sources separate from any patches you need to make
the software work in your environment.

Cross Reference

See the online manual pages for the patch and diff commands for more information on how to create
and apply a patch.

8.1.3. Creating a reproducible build of the software
The RPM system will automate the steps to create an application, as long as you configure the
RPM with the proper steps, such as which make targets to run. Unfortunately, configuring the proper
steps is not always easy. So before trying to make an RPM, you need to figure out how to build the
application or library you plan to package into an RPM. Once you have figured out how to build the
application or library, you can set up a reproducible build. The RPM system can then automate this
build.

To build the software, you’ll need to use a variety of Linux tools. The specific tools you need depend
largely on where the original software came from. The following sections outline some of the more
common techniques for preparing and building Linux software.

8.1.3.1. Unpacking Software
Many applications are downloaded in compressed tar format, often called a tarball. A tarball is merely
an archive file built by the tar command that has been compressed, usually using the gzip command.

In most cases, these files have a name such as the following:

Chapter 8. Creating RPMs: An Overview

128

filename.tar.gz

filename.tgz

filename.tar.Z

For the first two cases, use the gunzip command to unzip the file; then use the tar command to extract
the file, for example:

$ gunzip filename.tgz

$ tar xf filename.tar

Note

In the case of a file name ending in .Z, use the uncompress program instead of gunzip.

Once you have unpacked the sources, start looking around at the files.

8.1.3.2. Reading the README
Many applications come with a very handy file named README, or something similar, such as
README.txt. As the name implies, you should read this file. The README file answers some of the
most common questions about a particular application.

Note

You really should read any file named README or any variant of README.

Other useful files include those named INSTALL or some close variant. Read these files, too. Usually,
the README or the INSTALL file will tell you what you need to do to build the software.

Once you have extracted the source code files and read all the available documentation, the next step
is to build, usually compile, the application or library.

8.1.3.3. Building Programs with Linux Build Tools
Most applications or libraries need to be built into executable programs or compiled archived libraries.
This process of building can be as simple as just compiling, but is usually more involved. Most Linux
applications and libraries use a build tool called make to manage the building of the source code and
creation of the executable programs. The make command uses a file, normally named Makefile, that
contains the rules for building the software. You will usually find a Makefile in each directory in the
source code

Each Makefile contains a set of targets that define things that make can build. Each target defines
the commands to run to build a particular thing (make targets are purely arbitrary, although some
conventions are usually followed). Some combination of the targets results in a built application. The
make program runs the targets that you specify on the command line, or the Makefile rules indicate it
needs to run based on the targets you specify on the command line.

You need to tell make the target to build the application or library you want to package into an RPM.
Each target is defined within the Makefile. The conventional make targets to build and install a
program are:

make

Creating a reproducible build of the software

129

make install

When you call the make command without the name of a target, make builds the default target, named
all. This target usually compiles the program or library. The install target should install the program.

Note

The names of these make targets are conventions shared by many but not all programs. Other
common targets include clean, which should clean up any files built.

The commands in the Makefile may be specific to a given system. For example, the traditional
command for compiling C programs is cc, short for C Compiler. You may have the gcc command
(GNU C Compiler) instead. The options passed to the C compiler may differ depending on the
architecture of the system. Other commands may exist but be located in different locations. SUSE
Linux, for example, puts a lot of programs in /opt.

Note

These system-dependent issues mostly apply to various versions of Unix. Most modern Linux systems
are fairly similar. Because many packages, such as sendmail, have a long UNIX history, you’ll find all
sorts of complications in the Makefiles or many Makefiles provided with many applications. If we could
just convince everyone to give up all non-Linux operating systems, this task would be much simpler.

Because the Makefiles are platform specific, a number of tools have been developed to create the
proper Makefile, usually by running a program that knows about your system's architecture. The
simplest of these tools is the manual approach. You may download a program and find files such
as Makefile.amiga, Makefile.solaris, and Makefile.linux. You need to copy the file for your system
architecture to the name Makefile.

The following sections discuss other tools for creating Makefiles.

8.1.3.3.1. imake
A program called imake is used mostly for X Window graphical applications, and typically older X
Window applications. The imake command uses a file named Imakefile that contains rules used to
build a platform-specific Makefile. This allows X Window applications, which run on many architectures
and operating systems, to come with fairly generic build scripts.

When you see an Imakefile, use the following general set of commands to compileand install an
application:

$ xmkmf

$ make

$ make install

These commands work for most X Window applications. The xmkmf command is a script that runs the
imake command to create a Makefile. If the xmkmf command is not available or if this command does
not work, you may need to run a command such as the following:

make Makefile

Chapter 8. Creating RPMs: An Overview

130

Or, if there are multiple directories of source code, try the following command:

make Makefiles

Cross Reference

For more on imake, see www.dubois.ws/software/imake-stuff/.

8.1.3.3.2. The configure script
Most Linux programs, especially server-side or command-line programs, use a script called configure.
The configure script outputs a platform-specific Makefile.

If you see a script named configure in the source files, try the following commands to build and install
the program:

$./configure

$ make

$ make install

The ./configure command runs the script in the local directory, which outputs a Makefile configured
for your system. The make command builds the program and the make install command installs the
program.

The configure script is created by a set of tools including automake and autoconf, which use generic
files usually named configure.in and makefile.am, among other files, to create the generic configure
script.

In many cases, you’ll need to pass parameters to the configure script. One of the most common
parameters is --prefix, which tells the configure script the name of the starting directory from which to
base all other paths. This is the root directory for building the application.

Cross Reference

For more on the configure system, autoconf, and automake, see www.airs.com/ian/configure/.

8.1.3.3.3. Building Perl modules
Perl is a scripting language used heavily on Linux systems, especially by administrators. Most Perl
modules and packages use the following set of commands to create a system-specific Makefile and to
build the module:

$ perl Makefile.PL

$ make

$ make test

$ make install

If you see a file named Makefile.PL, chances are these are the commands to run to build the
application or module.

Planning for Upgrades

131

The goal of all these steps is to figure out how to make a reproducible build of the application or library
you want to package in RPM format. Once you have a build, the next step is to plan for upgrades.

8.1.4. Planning for Upgrades
Any application or library you package in RPM format is likely to get upgraded sometime. When this
happens, you’ll need to make a new RPM. This new RPM must handle not only installing the package,
but also handling any upgrade issues. You need to think about the following issues:

*How to install the RPM for the new version of the software. Are there any necessary install scripts?

*How to remove the previous RPM package. If your package has an install script, then you may need
an uninstall script to cleanly remove any changes made to the system by the install script. The RPM
system handles the removal of the files in the package. You need to handle the task of undoing any
changes made to the system during installation.

At this point in time, the main effort is to keep these issues in mind and plan ahead, since these issues
will come up with any upgrade.

8.1.5. Outlining Any Dependencies
Often, the hardest task is getting make to build a program properly. One potential problem is assuring
that all the dependencies are included. As you work with make, keep track of any other libraries that
the program you are trying to build requires. These libraries will become dependencies when you get
to the stage of making the RPM.

In most cases you do not want to include the dependencies in your RPM. Instead, each dependency
should have its own RPM for each necessary library. In many cases, you should be able to find RPMs
for these dependencies. Keep track of the packages that provide the dependencies.

After you have built the application, planned for upgrades and outlined dependencies, you can make
an RPM.

8.2. Building RPMs
In previous chapters, just about everything you want to do with RPMs is accomplished with the rpm
command. Building RPMs is one exception. Just about everything you want to do to build an RPM is
done by the rpmbuild command, often with a single command.

Warning

Older RPM manuals refer to using the –b option to the rpm command to create RPMs. Don’t use that
option. Instead, always use the rpmbuild command. The reason for this change is that starting with
version 4.1, RPM no longer maps the rpm -b command to the real command, rpmbuild.

When building RPMs, go through the following steps:

1.Set up the directory structure.

2.Place the sources in the right directory.

3.Create a spec file that tells the rpmbuild command what to do.

4.Build the source and binary RPMs.

Chapter 8. Creating RPMs: An Overview

132

The following sections provide details for these steps.

8.2.1. Setting up the directory structure
The RPM system expects five directories, as listed in Table 9-1.

Table 9-1 RPM directories

Directory Usage

BUILD The rpmbuild command builds software in this
directory.

RPMS The rpmbuild command stores binary RPMs it
creates in this directory.

SOURCES You should put the sources for the application in
this directory.

SPECS You should place the spec file for each RPM you
plan to make in this directory.

SRPMS The rpmbuild command places source RPMs in
this directory.

The RPMS directory usually has a number of architecture-specific subdirectories, such as the
following (on an Intel architecture system):

$ ls RPMS

athlon

i386

i486

i586

i686

noarch

By default, Red Hat Linux systems expect RPMs to be built in the /usr/src/redhat directory.

Note

This directory is obviously specific to Red Hat Linux. On other Linux distributions, you'll likely see other
directories.

Within the /usr/src/redhat directory, you’ll see the subdirectories listed in Table 9-1, as follows:

$ ls /usr/src/redhat

BUILD

RPMS

SOURCES

SPECS

Placing your sources into the directory structure

133

SRPMS

At first, it seems rather odd to be using a system directory to build RPMs. But remember that the RPM
system was originally built to create Linux distributions. You can also change the default directories by
modifying your rpmrc settings.

Cross Reference

See Chapter 20, Customizing RPM Behavior for more on the use of the rpmrc settings.

For now, it is easiest to just change to the /usr/src/redhat directory and work from this location. To
start, you will need to change ownership or permissions on these files so you can build RPMs while
logged in as a normal user.

Warning

Do not build RPMs while logged in as root. Mistakes in building packages can have serious
consequences if you are logged in as root.

To build RPMs, you really need only two things:

*Your sources in the SOURCES directory

*Your spec file in the SPECS directory

8.2.2. Placing your sources into the directory structure
You can place all the source files directly in the /usr/src/redhat/SOURCES directory. In most cases,
however, it is easier to create a tarball of the sources you want to build and place the tarball file in
the /usr/src/redhat/SOURCES directory. The RPM specifications for commands necessary to extract
the sources from such a file are trivial. Furthermore, the tarball, when extracted, should create a
subdirectory specific to your package. This keeps your source code separate from other packages that
also have source code in the SOURCES directory.

The best strategy is to start in a directory of your own making, create the tarball file from the sources,
and then copy the tarball file to the /usr/src/redhat/SOURCES directory.

The convention for these tarball files is package-version.tar.gz. For example:

jikes-1.17.tar.gz

Place a file like this into the /usr/src/redhat/SOURCES directory. This file should include all the
sources, all the build scripts, and any documentation you want to install as part of the package.

8.2.3. Creating the spec file
The spec file, short for specification file, defines all the actions the rpmbuild command should take to
build your application, as well as all the actions necessary for the rpm command to install and remove
the application. Each source RPM should have the necessary spec file for building a binary RPM.

The spec file is a text file. The normal naming convention is to name the file with the package name
and a .spec filename extension. For example, the jikes package spec file would be named jikes.spec.

Inside the spec file, format the information on the package using a special syntax. This syntax defines
how to build the package, version numbers, dependency information, and everything else you can

Chapter 8. Creating RPMs: An Overview

134

query about a package. This syntax differs slightly depending on the sections in the spec file. The
following sections describe these spec file sections and the necessary syntax in each section.

8.2.3.1. The introduction section
The introduction section contains information about the package, the type of information shown with
the rpm -qi command. For example:

Summary: java source to bytecode compiler

%define version 1.17

Copyright: IBM Public License, http://ibm.com/developerworks/oss/license10.html

Group: Development/Languages

Name: jikes

Prefix: /usr

Provides: jikes

Release: 1

Source: jikes-%{version}.tar.gz

URL: http://ibm.com/developerworks/opensource/jikes

Version: %{version}

Buildroot: /tmp/jikesrpm

%description

The IBM Jikes compiler translates Java source files to bytecode. It

also supports incremental compilation and automatic makefile generation,

and is maintained by the Jikes Project:

http://ibm.com/developerworks/opensource/jikes/

In this example, you can see the Source: definition of a compressed tar archive associated with a
particular version number. This also names a Buildroot: setting that defines where the files will get built
into a working program. You can see the description of the package that will get printed with the rpm –
qi command.

Note

You can further divide this first section into the preamble and other areas. For simplicity, I grouped all
introductary parts of a spec file into one introduction section.

This example comes from a real-world RPM spec file. It does not follow all the rules for creating
RPMs. This example:

*Should not explicitly provide jikes, the name of the package.

Creating the spec file

135

*Should not include a Copyright tag, as this tag is deprecated.

*Uses a %define for the version when the rpmbuild command can create a version macro for you.

8.2.3.2. The prep section
The prep section, short for prepare, defines the commands necessary to prepare for the build. If you
are starting with a compressed tar archive (a tarball) of the sources, the prep section needs to extract
the sources.

For example:

%prep

%setup -q

The prep section starts with a %prep statement.

This example uses the %setup RPM macro, which knows about tar archives, to extract the files. In
most cases, this will be all you need in your spec file prep section.

8.2.3.3. The build section
The spec file build section contains the commands to build the software. Usually, this will include just a
few commands, since most of the real instructions appear in the Makefile. For example:

%build

./configure CXXFLAGS=-O3 --prefix=$RPM_BUILD_ROOT/usr

make

The build section starts with a %build statement.

The commands shown for this build section run the configure script, covered in the previous section on
Linux build tools, and then run the make command with the default maketarget. If things unfold as they
should, this procedure builds the software.

8.2.3.4. The install section
The spec file install section holds the commands necessary to install the newly built application or
library. In most cases, your install section should clean out the Buildroot directory and run the make
install command. For example:

%install

rm -fr $RPM_BUILD_ROOT

make install

The install section starts with an %install statement.

8.2.3.5. The clean section
The clean section cleans up the files that the commands in the other sections create:

Chapter 8. Creating RPMs: An Overview

136

%clean

rm -rf $RPM_BUILD_ROOT

The clean section starts with a %clean statement

8.2.3.6. The files section
Finally, the files section lists the files to go into the binary RPM, along with the defined file attributes.
For example:

%files

%defattr(-,root,root)

/usr/bin/jikes

%doc /usr/doc/jikes-%{version}/license.htm

%doc /usr/man/man1/jikes.1*

The files section starts with a %files statement

The %doc macro marks certain files as documentation. This allows the RPM to distinguish the files
holding documentation from the other files in the RPM.

Cross Reference

This example skips the install and uninstall script sections, as well as a verification section. There are
also no triggers defined in this RPM spec file. All of these topics are covered in Chapter 9, Working
with Spec Files and Chapter 10, Advanced RPM Packaging.

Once you have written your spec file, and placed the files in the SOURCES and SPECS directories
under /usr/src/redhat, you’ll see files like the following:

$ ls –CF /usr/src/redhat/*

/usr/src/redhat/BUILD:

/usr/src/redhat/RPMS:

athlon/ i386/ i486/ i586/ i686/ noarch/

/usr/src/redhat/SOURCES:

jikes-1.17.tar.gz

/usr/src/redhat/SPECS:

jikes.spec

/usr/src/redhat/SRPMS:

That is, with a clean system and no other RPMs being built, you'll see a spec file in /usr/src/
redhat/SPECS and the sources in /usr/src/redhat/SOURCES. In this example, the sources are in a

Building RPMs with the rpmbuild command

137

compressed tar archive. (For this, the RPM spec file, jikes.spec needs to have a command in the prep
section to extract the files.)

You should now be ready to build an RPM.

8.2.4. Building RPMs with the rpmbuild command
To build RPMs with the rpmbuild command, use the following basic syntax:

rpmbuild -bBuildStage spec_file

The -b option tells rpmbuild to build an RPM. The extra BuildStage option is a special code that tells
the rpmbuild command how far to go when building. Table 9-2 lists these options:

Table 9-2 Options for building with rpmbuild

Option Usage

-ba Build all, both a binary and source RPM

-bb Build a binary RPM

-bc Build (compile) the program but do not make the
full RPM, stopping just after the %build section

-bp Prepare for building a binary RPM, and stop just
after the %prep section

-bi Create a binary RPM and stop just after the
%install section

-bl Check the listing of files for the RPM and
generate errors if the buildroot is missing any of
the files to be installed

-bs Build a source RPM only

Note

See chapter 12 for advanced options you can use with rpmbuild.

For example, to set up all the necessary files and prepare for building, run the following command:

rpmbuild –bp specfile

This example runs through the %prep section, and stops immediately after this section. With the jikes
package, for example, you’ll see a result like the following:

$ rpmbuild -bp /usr/src/redhat/SPECS/jikes.spec

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.72435

+ umask 022

+ cd /usr/src/redhat/BUILD

+ LANG=C

+ export LANG

Chapter 8. Creating RPMs: An Overview

138

+ cd /usr/src/redhat/BUILD

+ rm -rf jikes-1.17

+ /usr/bin/gzip -dc /usr/src/redhat/SOURCES/jikes-1.17.tar.gz

+ tar -xf -

+ STATUS=0

+ '[' 0 -ne 0 ']'

+ cd jikes-1.17

++ /usr/bin/id -u

+ '[' 500 = 0 ']'

++ /usr/bin/id -u

+ '[' 500 = 0 ']'

+ /bin/chmod -Rf a+rX,g-w,o-w .

+ exit 0

After running this command, the source files are extracted into the /usr/src/redhat/BUILD directory,
under the jikes-1.17 subdirectory. Using a subdirectory keeps the sources for this package from
intermixing with the sources for other packages.

Running a directory listing on the /usr/src/redhat/BUILD/jikes-1.17 subdirectory shows what the spec
file %prep section commands have done. For example:

$ ls -1 /usr/src/redhat/BUILD/jikes-1.17

acinclude.m4

aclocal.m4

AUTHORS

ChangeLog

config.guess

config.sub

configure

configure.in

COPYING

depcomp

doc

INSTALL

Building RPMs with the rpmbuild command

139

install-sh

jikes.spec

Makefile.am

Makefile.in

missing

mkinstalldirs

NEWS

README

src

TODO

Note

From these sources, you see a configure script. The configure script gives a good indication of how
the software needs to be built. This example also shows a README file. You know what to do with
these files.

The actual source code is in the /usr/src/redhat/BUILD/jikes-1.17/src directory. The user
documentation is stored in the /usr/src/redhat/BUILD/jikes-1.17/doc directory.

To build a binary RPM, use the –bb option to the rpmbuild command. For example:

$ rpmbuild -bb /usr/src/redhat/SPECS/jikes.spec

Warning

Don’t build packages when you are logged in as the root user. Log in as a normal user instead.
This is to limit the damage caused to your system if the spec file or the Makefile contains errors that
delete system files, for example. If you are logged in as the root user, you will have permission to
perform these destructive acts. If you are logged in as a normal user, though, these RPM spec file and
Makefile errors will fail to run, because you don’t have permission to modify system files.

This command results in a lot of output, most coming from the configure script. (This script examines
the C programming environment on your system.) When the rpmbuild command completes, you’ll
see the binary RPM in the proper subdirectory of the RPMS directory. You can see the RPM with a
directory listing, for example:

$ls /usr/src/redhat/RPMS/i386:

jikes-1.17-1.i386.rpm

To stop execution just after the %install section, use a command like the following:

rpmbuild –bi specfile

For example:

rpmbuild -bi /usr/src/redhat/SPECS/jikes.spec

Chapter 8. Creating RPMs: An Overview

140

To build a source RPM out of the files you have (in this case a tar archive of the sources and the spec
file), use a command like the following:

rpmbuild –bs specfile

For example:

$ rpmbuild -bs /usr/src/redhat/SPECS/jikes.spec

When done, you’ll see the source RPM in the /usr/src/redhat/SRPMS directory:

$ ls /usr/src/redhat/SRPMS

jikes-1.17-1.src.rpm

To clean out the files created by building these RPMs, use the --clean option to the rpmbuild
command:

rpmbuild --clean specfile

For example:

$ rpmbuild --clean /usr/src/redhat/SPECS/jikes.spec

Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.21908

+ umask 022

+ cd /usr/src/redhat/BUILD

+ rm -rf jikes-1.17

+ exit 0

Cross Reference

Chapter 11, Controlling the Build with rpmbuild covers a number of addition options for the rpmbuild
command that you can use to customize the build.

8.3. Verifying Your RPMS
After you've built an RPM, you can use the techniques from Chapter 4, Using the RPM Database to
verify the RPM. You can also use the –bl option to the rpmbuild command to verify the list of files in the
RPM. Use a command like the following:

rpmbuild –bl spec_file

For example:

$ rpmbuild -bl /usr/src/redhat/SPECS/jikes.spec

Processing files: jikes-1.17-1

error: File not found: /tmp/jikesrpm/usr/bin/jikes

error: File not found: /tmp/jikesrpm/usr/doc/jikes-1.17/license.htm

Summary

141

error: File not found by glob: /tmp/jikesrpm/usr/man/man1/jikes.1*

Provides: jikes

RPM build errors:

File not found: /tmp/jikesrpm/usr/bin/jikes

File not found: /tmp/jikesrpm/usr/doc/jikes-1.17/license.htm

File not found by glob: /tmp/jikesrpm/usr/man/man1/jikes.1*

This example shows a number of errors. The -bl option checks that all the necessary files are located
within the buildroot directory. The buildroot directory is a location that acts like the final installed root
directory. From the previous example, this package was not properly built yet.

In a situation like this, you can start over, or use the --short-circuit option to restart the build from a
given section in the spec file. As you create an RPM, you will need to go back and forth restarting the
build as you detect and fix errors.

You can also use the rpm command with options such as –V for verification on a fully-built package.
For example:

$ rpm -Vp /usr/src/redhat/RPMS/i386/jikes-1.17-1.i386.rpm

S.5....T /usr/bin/jikes

.......T d /usr/doc/jikes-1.17/license.htm

..5....T d /usr/man/man1/jikes.1.gz

In this case, you see some file sizes and times differ. These differences can be explained by the fact
that the original package was compiled on a different system and older version of Red Hat Linux than
the version compiled locally.

Cross Reference

See the on "Verifying Installed RPM Packages" section in Chapter 4, Using the RPM Database for
more on the -V option.

8.4. Summary
This chapter introduced the task of building RPMs, whether building RPMs from your own applications
or from software you have gathered elsewhere. In both cases, the steps for building the RPMs are the
same.

In most cases, you should build an RPM of the sources for your application, an RPM that can be used
to reproduce the build of the application. Create a second RPM that holds the binary application. Once
you set up the commands and define the spec file for the binary RPM, making a source RPM is trivial.

Use the rpmbuild command to create RPMs. This command uses an RPM spec file to define the
commands and settings for creating the RPM.

The next chapter delves into the spec files that define the RPM directives for your packages.

142

Chapter 9.

143

Working with Spec Files
This chapter covers:

• Writing spec files

• Defining package information

• Controlling the build

• Listing the files in the package

• Defining spec file macros

The previous chapter introduces the concepts of how to build RPMs, and briefly covered the spec file,
which controls how RPM packages are built and installed. This chapter delves into how to create spec
files and the next chapter covers advanced spec file topics such as using conditional commands and
making relocatable packages.

A spec file defines all the commands and values that are required for creating a package, everything
from the name and version number to the actual commands used to build the program you are
packaging.

This chapter covers the spec file syntax and how to write spec files. In goes in depth into defining
information about your package, controlling how the software will be built, defining what exactly should
go into the package, and customizing your build with RPM macros.

9.1. Reading Spec Files
The first step to learning more about spec files is to read through some of the huge number of spec
files for the source RPMs that come with your Linux distribution. Looking at these files will show two
things right away:

*You will see that the spec file syntax is not really as complicated as it appears.

*You will see how many others have solved problems similar to those you need to solve.

I’ve used real-world examples throughout this book, to show how the RPMs you need to deal with
actually work. Some of the more interesting packages include anything that has a client and a server
component, anything with networking or e-mail, and anything that installs a system service. All
these types of packages solve problems that you will commonly face. Some useful spec files to look
at are those for anonftp, telnet, vnc, and sendmail. To get these spec files, you need to install the
corresponding source RPMs for each of these packages.

As you read through spec files, you’ll start to see common patterns in how packages are defined,
named, the macros used, and common elements in the build sections of the spec files. You’ll also see
how network services are installed on Linux, as well as example install and uninstall scripts. The next
sections provide more information on the things to look for within spec files.

Furthermore, even with the plethora of options RPM provides, if you know shell scripting basics and
something about how C programs are normally built, with configure scripts and make commands, you
will find most spec files relatively easy to understand.

The following sections go into the details of writing your own spec files. Keep your example spec files
handy as you read through these sections.

Chapter 9. Working with Spec Files

144

9.2. Writing Spec Files
Spec files are text files containing RPM directives. These directives use a simple syntax of a tag
name, a colon, and a value:

TagName: value

For example:

Version: 1.15

This example sets the package version to 1.15. The name of the item is not case sensitive, so tag
names of version, Version, or VERSION all set the same value. This syntax works for most settings,
including Name, Release, and so on.

In addition to this directive syntax, you can define macros using the RPM %define syntax. For
example:

%define major 2

This example defines a macro named major with a value of 2. Once defined, you can access macros
using the %{macro_name} or just %macro_name syntaxes. For example:

source: %{name}-%{version}.tar.gz

See the section "Defining Spec File Macros" later in this chapter for more options for macros.

Major sections in the spec file are also delimited with % markers. For example, the build section starts
with %build on a line by itself.

Note

The multiple uses of the % sign aren’t really that confusing in practice. Read through some spec files
and you should find most of the commands are easily understood.

Blank lines separate sections in the spec file, which makes sense for readability as well.

9.2.1. Comments
To help document your work, you can include comments (to yourself and others reading the spec file).
Any line starting with a hash character, #, holds a comment. RPM will ignore comments.

This is a comment.

In spec files, comments are mostly to help explain your syntax choices to yourself should you view
the spec file later. Comments are a good thing. You should comment heavily, especially for any choice
that deviates from the norm. For example, if you provide special C compiler options for building the
package, add comments to describe why you picked the options and how necessary they are. Such
comments help immensely should you need to port the RPM to another architecture or modify how it
was built.

Tip

Avoid single percent signs, %, in comments. For example:

Storing spec files on disk

145

Added new commands to %prep

The rpmbuild command may report an error of a second %prep section. To get around this problem,
use two percent signs, such as %%prep, in spec file comments.

9.2.2. Storing spec files on disk
As discussed in Chapter 8, Creating RPMs: An Overview , the rpmbuild command expands
source RPMs to the /usr/src/redhat directory. Under this directory, the RPM system assumes five
subdirectories, listed in Table 10-1.

Table 10-1 Default RPM directories

Directory Usage

BUILD Where the rpmbuild command builds software

RPMS Where the rpmbuild command stores binary
RPMs it creates

SOURCES Where you should put the sources for the
application

SPECS Where you should place the spec file

SRPMS Where the rpmbuild command places source
RPMs

The spec files you create should be stored in the SPECS directory while building RPMs. (You can
store your spec files permanently in any location you desire.)

Cross Reference

These directories are the default directories. See Chapter 22, Spec File Syntax for changing RPM
default values. In addition, these are the defaults for Red Hat Linux. See Chapter 18, Using RPM on
Non-Red Hat Linuxes and Chapter 18, Using RPM on Non-Red Hat Linuxes for discussions on other
versions of Linux and other non-Linux operating systems, respectively.

With the knowledge of the spec file syntax covered in the preceding sections, you can start to write
spec files. The first step is to define the basic package information.

9.3. Defining Package Information
Most of the package information you need to enter into a spec file fleshes out the information you can
query for a given package, such as the name, version, and release information, along with a longer
description and a one-line summary.

This gets a little more complicated when you set build locations, name source files, and name patches.
The following sections cover how to specify the package information.

9.3.1. Describing the package
The first part of the spec file defines macros (covered in the section "Defining Spec File Macros"),
and describes the package. Starting with the basics, you need a name, version, and release. You
also should provide a longer description. For legal reasons, you may need to include ownership and
copyright information.

Chapter 9. Working with Spec Files

146

9.3.1.1. Naming the Package
The most important part of the package description is the NVR, or Name-Version-Release
information, because this information is so crucial for the RPM system to compare versions and track
dependencies.

Set the name with the Name: directive. For example:

Name: myapp

The name should not contain any spaces or other whitespace characters such as tabs or newlines.
Remember, RPM files are named, by default, name-version-release.rpm, or name-version-release-
architecture.rpm, so use valid characters for file names.

The version number is used in version comparisons. The RPM comparison algorithm is fairly complex,
but can get fooled by strange version numbers. So, your best bet is to stick to dotted numerics, such
as 1.5 or 2.3.1.1.4 or 1.0. Version numbers such as these will compare best from within the RPM
system. For example:

Version: 1.1.2

You cannot use a dash in the version number, as RPM uses the dash to separate the Name-Version-
Release elements. You can use a dash in the package name, though.

The release number should start at 1 for the first RPM you build for a given version of the package,
and count up from there. For example:

Release: 1

The release differentiates newer updates of the RPM itself, even if the underlying application hasn’t
changed. (The application may be compiled with different compiler options, though.) For most usage,
simply start at 1 and each time you modify the spec file and recreate the package, increment the
release number.

If the version number is not enough to allow for comparisons, for example, if the version numbering
scheme has changed radically between releases, you can define an Epoch: directive. For example:

Epoch: 3

If you renumber your versions, use an Epoch setting to clarify the version history. For example, Sun
Microsystems went from SunOS 4.1 to Solaris 2. The Epoch: helps RPM properly handle strange
version number changes. Define the Epoch: as a whole number such as 1, 2, or 3.

Warning

Avoid using the Epoch: directive if at all possible. It is far better to use a sane version-numbering
scheme than to try to resolve the mess with epoch values. The main problems with using an epoch
value are that epochs are hidden from users in most cases, and using epochs can lead to very
strange-looking tasks such as a newer package with a version number that looks older than the older
package.

The older Serial: directive also works similarly to the Epoch: directive. For example:

Serial: 6

Like the Epoch:, the Serial: directive should be a number that counts upward. Modern packages
should use the Epoch: directive instead of Serial:, since Serial: has been deprecated for many, many
rpm versions.

Describing the package

147

The Group: directive provides a classification for your packages. If at all possible, use a category
name that already exists for other packages, such as System Environment/Shells for a Linux shell. For
example:

Group: System Environment/Shells

Many graphical installation tools divide packages by these categories, so you want to fit into the
existing group names if possible. (See Chapter 4, Using the RPM Database for more on querying
group information from RPMs.) The official list of groups are located in the file /usr/share/doc/rpm-4.1/
GROUPS for RPM 4.1, and in a similar location for other RPM versions.

The Distribution: directive is used by Linux distribution vendors such as Red Hat to identify that the
package is part of a given distribution, or was built for a particular distribution. Most packages created
outside of the Linux vendors don’t provide this directive.

Distribution: Red Hat Linux

The Icon: directive names an icon file stored in the RPM. The file format should be XPM or GIF, with
an extension of .xpm or .gif, respectively. Some packaging tools will use this icon in a package display.

9.3.1.2. Specifying Company Information
For legal reasons, you probably want to specify the organization behind the RPM, any copyright or
licensing information, as well as a URL to find out more information. Even if you are not concerned
about corporate legal issues, you may want to identify where the package came from. Use the
following directives to provide this information.

The Vendor: directive names the company or organization behind an RPM. For example:

Vendor: The Really Cool Company

The URL: directive provides a URL to your company or organization home page, or perhaps to a URL
for a particular application. For example:

URL: http://mycompany.yow/products/coolstuff

Similarly, the Packager: directive provides an optional name and e-mail address for the person who
created the RPM:

Packager: Bob Marley <marley@reggae.com>

The License: and Copyright: directives provide legal information about your package. Older packages
tended to use Copyright: as a statement of the package’s license, not copyright. For example:

Copyright: BSD

License: LGPL

Warning

The Copyright: directive is deprecated in favor of License:.

9.3.1.3. Filling in the Description
The Summary: directive provides a one-line short description of the package. You should not exceed
much more than 50 characters when writing your summary. For example:

Chapter 9. Working with Spec Files

148

Summary: A program that does exactly what you want

Note

The Summary: directive of the spec file replaces the older Description: directive.

The %description section allows for longer text describing your package. Fill in as many lines as you
need after the %description section. For example:

%description

This is a really cool package. It contains the really cool

program that provides a maximum return on investment,

or ROI, for achieving your crucial business objectives

utilizing world-class high-caliber componentized software

implemented with world-class quality and performance

metrics.

The %description section supports a limited amount of formatting. Blank lines are assumed to
separate paragraphs. Some graphical user interface installation programs will reformat paragraphs
into a nicer-looking font and change the display width.

Lines in the %description section that start with whitespace, such as a space or tab, will be treated as
preformatted text and displayed as is, normally with a fixed-width font. The rpm command supports
text formatting this way. Other rpm programs may not.

9.3.1.4. Specifying the Platform Architecture
Spec files can announce that a package can run on more than one operating system or is tied to a
particular version of a particular operating system.

For example, the Excludearch: directive states that a package should not be built on the given
architecture or architectures. For example:

ExcludeArch: sparc s390 s390x

This example excludes the SPARC and S/390 mainframe architectures. You can provide more than
one architecture in the directive, separated by spaces or commas.

Similarly, the Exclusivearch: directive states that a package can only be built on the given architecture
or architectures. For example:

ExclusiveArch: i386 ia64 alpha

This example identifies the package as only working on the Intel i386, IA-64, and Alpha architectures.

The Excludeos: and Exclusiveos: directives restrict the operating system. For example:

Excludeos: windows

This example states that the package should not be built on Windows. In contrast, the Exclusiveos:
directive names only the operating system or systems that the package can be built on. For example:

Setting build locations

149

Exclusiveos: linux

Cross Reference

Chapter 18, Using RPM on Non-Red Hat Linuxes and Chapter 19, RPM on Other Operating Systems
cover RPMs on other versions of Linux and other operating systems, respectively.

9.3.2. Setting build locations
RPM supports two build-related directories with very similar names, the build directory and the
buildroot.

The build directory is the location where RPM actually builds the software, compiling source code,
running the configure script, and so on. Normally, you do not need to worry about the build directory as
the rpmbuild command properly changes to this directory as needed.

The buildroot, on the other hand, acts as a staging area that looks like the final installation directory.
The name buildroot refers to the fact that the final installation directory is usually the root directory, /.
The install section of the spec file (covered in the section "Installing the Software") installs files into
the buildroot directory in the proper subdirectories, as if the files were really under the system root
directory, /. This allows the buildroot directory to hold all the final installed files for a package, so you
can see what will really be installed by the package.

You should always set the buildroot by defining a Buildroot: entry in your spec file. For example:

Buildroot: %{_tmppath}/%{name}-%{version}-root

This example sets the buildroot under the temporary directory named in the %_tmppath macro. The
subdirectory is named based on the name and version of the package. For example, for a package
named ypbind and a version 1.12, with a %_tmppath value of /tmp, the final buildroot directory would
be:

/tmp/ypbind-1.12-root

Once you set a buildroot, your scripts run from the spec file and commands within the spec file can
access the buildroot using the RPM_BUILD_ROOT environment variable. You normally need to
access the RPM_BUILD_ROOT environment variable in the install section of the spec file (covered in
the section "Installing the Software").

Note

You can override the buildroot with the --buildroot command-line parameter to the rpmbuild command.

The buildroot replaces the older, and now obsolete directive, Root:.

9.3.3. Naming source files
Most packages have one or more bundles of source code, which you need to name in the spec file.
In most cases, you will have a compressed tar archive of source files. These may be files developed
by your organization or downloaded from an Internet site. You can define one or more source tags,
counting from 0. For example:

Source0: telnet-client.tar.gz

Source1: telnet-xinetd

Chapter 9. Working with Spec Files

150

Source2: telnet.wmconfig

In this example, Source0: refers to a compressed tar archive. The rpmbuild program will extract the
files into the buildroot directory. The Source1: and Source2: directives name individual source files.
You can name compressed tar archives or individual files as needed.

If you just have one Source directive, you can skip the 0. For example:

Source: telnet-client.tar.gz

You can also use FTP or HTTP URLs to name sources. For example:

Source0: ftp://ftp.somesite.yow/pub/linux/%{telnet_version}.tar.gz

Note

The URLs listed in source directives are for convenience and future reference only. RPM will not
download these files.

The files named by the Source directives will get included into the source RPM. Sometimes you need
to keep some sources out of the source RPM. This could be for proprietary sources you cannot ship,
or simply due to size. The Nosource: directive tells RPM to skip a source file from the source RPM.
For example:

NoSource: 0

This example means that the first source item should not be included in the package.

NoSource: 3

This example means that the third source item should not be included in the package. The NoPatch
directive works similarly. In addition, do not place more than one number on any given NoSource or
NoPatch directive.

Note

Using the Nosource: or NoPatch: directives, covered following, mean you are creating a source RPM
that cannot be rebuilt unless you also have the sources or patches, respectively, that were used to
create the original RPM.

If the package contains a Nosource: or Nopatch: directive, rpmbuild will use a file-name extension
of .nosrc.rpm instead of .src.rpm.

9.3.4. Naming patches
Patches are named similar to sources, using a similar syntax. For example:

Patch1: telnet-client-cvs.patch

Patch2: telnetd-0.17.diff

Patch3: telnet-0.17-env.patch

Patch4: telnet-0.17-issue.patch

Patch5: telnet-0.17-sa-01-49.patch

Controlling the Build

151

Patch6: telnet-0.17-env-5x.patch

Patch10: telnet-0.17-pek.patch

Note that you can have Patch directives are not numbered sequentially, such as the Patch10: directive
in this example. In addition, you must apply each patch manually using %patch directives.

The patch files may be individual files or compressed (with gzip) patch files.

Cross Reference

See the patch and diff online manual pages for more on patches.

Patches are important because they allow you to start with pristine sources, the source code for the
original application. You can then apply patches as needed to get a working application, more clearly
separating the work needed to create an RPM from the original application source code.

Cross Reference

Chapter 13, Packaging Guidelines discusses packaging guidelines and best practices. Starting from
pristine sources is one of the best practices.

Similar to the sources directives, you can define a Nopatch: directive, which defines a patch that is
applied to the sources, but is not included in the source RPM.

9.4. Controlling the Build
After describing information about the package, the crucial step comes when you need to build the
package. The spec file should contain all the commands needed to build the application or library
you want to package. But, and this is the important part, most of the build process should be run from
a Makefile or other conventional way to build applications. Using a build tool such as make means
that you can test the application outside of the RPM system. You don’t need an RPM to build the
application. Instead, you use the RPM to package the application.

Cross Reference

Chapter 8, Creating RPMs: An Overview covers make and other Linux build tools.

In RPM terms, building the package is split into four steps:

1.Preparing for building, including unpacking the sources

2.Building

3.Installing the application or library

4.Cleaning up

The next sections cover how to control the build run by rpmbuild by defining commands within your
spec files.

9.4.1. Preparing for the build
The %prep section defines the commands to prepare for the build. In most cases, you can run the
simple %setup macro. For example:

Chapter 9. Working with Spec Files

152

%prep

%setup -q

This command changes to the build directory, typically /usr/src/redhat/BUILD, and then extracts
the source files. This macro expects that at least one of the source files will create the necessary
subdirectory under /usr/src/redhat/BUILD. This subdirectory should be named with the package name
and version, such as telnet-1.0.1. If you are not using a compressed tar archive that will automatically
create the right subdirectory, add the –c option to the %setup macro. The –c option creates the
subdirectory for extracting the sources.

The –q command-line option runs in quiet mode with minimal output. The –T option disables the
automatic extraction of compressed tar files. You can set the name of the build subdirectory with the –
n option.

Normally, the %setup macro deletes the subdirectory prior to extracting the sources. You can disable
the directory deletion with the –D option.

Table 10-2 summarizes the %setup command-line parameters. Many of these options apply mostly for
subpackages, a topic covered in Chapter 10, Advanced RPM Packaging .

Table 10-2 Command-line parameters for %setup

Parameter Usage

-a number Only unpack the source directive of the given
number, such as –a 0 for source0:, after
changing to the directory.

-b number Only unpack the source directive of the given
number, such as –b 0 for source0:, before
changing to the directory.

-c Create directory before unpacking, used if your
sources will not create the directory as part of
unpacking.

-D Do not delete the directory before unpacking.

-n name Name the directory as name.

-q Run quietly with minimal output.

-T Disable the automatic unpacking of the archives.

The %setup directive can automatically extract tar, zip, gzip, bzip2, pack, compress, and lzh
compressed files. The tar-gzip format is most widely used, though.

Like the %setup macro, the %patch directive applies a patch to the sources. Use this macro in your
%prep section if you have patches. You need a %patch directive for each patch.

The %patch directive accepts –p and other command-line parameters for the underlying patch
command. The –p option, with a number, such as –p0, tells the patch command to remove that many
slashes from the file names within the patch. A –p0 option tells the patch command to remove no
slashes, a –p1 option tells patch to remove one slash, and correspondingly, one directory level from
the files in the patch. You can also pass other options for the patch command.

Use these options if you need them for the patch command when manually patching the sources.
Otherwise, you can set up your %prep section as follows, for a spec file with two patches:

Building the software

153

%prep

%setup –q

%patch1

%patch2

Use numbers to identify which patch to apply. For example, %patch0 corresponds to the patch file
named with the Patch0: directive.

Note

You must define a separate %patch directive for each patch. In most packages, this format, %patch1,
%patch2, and so on, is used.

The %patch directive without a number corresponds to %patch0.

Cross Reference

See the patch and diff online manual pages for more on patches.

In addition to the options supported by the patch command, you can use special options to the %patch
directive to control how the directive works. The –P option tells the %patch directive to apply a given
patch. For example, to only apply the patch named with the Patch2: directive, use the following
%patch directive:

%patch –P 2

Note

This is an uppercase P. The lowercase p performs a different function, described earlier in this section.
The -P option is rarely used. Instead, patches are normally applied with %patch0, %patch1, and so on
directives.

9.4.2. Building the software
The %prep section prepares for the build, which the %build section performs. You need to fill in the
%build section with all the commands necessary to build the software. In most cases, this consists
simply of the following commands:

%build

./configure

make

In this case, the %build section runs two commands, ./configure to run the configure script, and make
to build the software. For most applications, this may be all you need. You can use the %configure
macro in place of the call to the ./configure script. For example:

%build

%configure

Chapter 9. Working with Spec Files

154

make

Most spec files should use the %configure macro, since it automatically sets many environment
variables that are often used within the configure script, especially path-related values such as the
online manual path, the temporary directory, and so on. You can use the rpm --eval to see how the
%configure macro expands. For example:

$ rpm --eval '%configure'

CFLAGS="${CFLAGS:--O2 -march=i386 -mcpu=i686}" ; export CFLAGS ;

CXXFLAGS="${CXXFLAGS:--O2 -march=i386 -mcpu=i686}" ; export CXXFLAGS ;

FFLAGS="${FFLAGS:--O2 -march=i386 -mcpu=i686}" ; export FFLAGS ;

[-f configure.in] && libtoolize --copy --force ;

./configure i386-redhat-linux \

--prefix=/usr \

--exec-prefix=/usr \

--bindir=/usr/bin \

--sbindir=/usr/sbin \

--sysconfdir=/etc \

--datadir=/usr/share \

--includedir=/usr/include \

--libdir=/usr/lib \

--libexecdir=/usr/libexec \

--localstatedir=/var \

--sharedstatedir=/usr/com \

--mandir=/usr/share/man \

--infodir=/usr/share/info

Note

The vast majority of the work of building the software should remain in the Makefile where it belongs.
The commands in the spec file should invoke the targets defined in the Makefile. Don’t place too
much logic in your RPM spec file as this makes it harder to test the application or library you plan to
package.

If you intend to support relocatable packages, covered in Chapter 10, Advanced RPM Packaging , you
will likely need to pass a --prefix option to the configure script. For example:

%build

Installing the software

155

./configure --prefix=$RPM_BUILD_ROOT/usr

make

You can also pass other options to the configure script, as needed, for compiling the application.

9.4.3. Installing the software
The %install section should install the software built in the %build section. If your Makefile contains all
the instructions to install, you can define an %install section as follows:

%install

make install PREFIX=$RPM_BUILD_ROOT/usr

In most cases, you need to pass some parameter to make or install or another command to install all
files into the buildroot directory, as shown in this example with the $RPM_BUILD_ROOT environment
variable. You need to look within the Makefile to determine if the make variable should be PREFIX,
prefix, or something else.

Sometimes, you want to call the install command instead of make to perform the installation. For
example:

%install

install -m755 myapp $RPM_BUILD_ROOT/usr/bin/myapp

This example uses a hypothetical application name of myapp.

Many packages use the %makeinstall macro, which runs the make install command. For example:

%install

rm -rf $RPM_BUILD_ROOT

%makeinstall

This example also cleans the files from the buildroot. Use the rpm --eval command to see how the
%makeinstall macro expands. For example:

$ rpm --eval '%makeinstall'

make \

prefix=/usr \

exec_prefix=/usr \

bindir=/usr/bin \

sbindir=/usr/sbin \

sysconfdir=/etc \

datadir=/usr/share \

Chapter 9. Working with Spec Files

156

includedir=/usr/include \

libdir=/usr/lib \

libexecdir=/usr/libexec \

localstatedir=/var \

sharedstatedir=/usr/com \

mandir=/usr/share/man \

infodir=/usr/share/info \

install

Note

RPM 4.2 adds a %check section after the %install.

9.4.4. Cleaning up after the build
The %clean section should clean up after the build and installation, removing compiled files and other
files created as part of the build. If you use a buildroot, discussed previously, then you can provide a
%clean section like the following:

%clean

rm -rf $RPM_BUILD_ROOT

9.4.5. Defining installation scripts
In addition to the sections described previously for controlling the build of the package software, you
can define more scripts in your RPM spec files. RPM supports a script run prior to installation, %pre,
and a script run after installation, %post. The same concepts apply when a package is erased, or
uninstalled. The %preun script is run just before the uninstall and the %postun script just after the
uninstall.

Cross Reference

Chapter 10, Advanced RPM Packaging covers triggers, another form of script that gets run when
packages are installed or removed.

Start your scripts with the RPM section marker for the given script, such as %pre for the pre-install
script. Then, place the shell commands you want to run. For example, the following define %post,
%preun and %postun scripts from the ypbind networking package:

%post

/sbin/chkconfig --add ypbind

%preun

if ["$1" = 0] ; then

/sbin/service ypbind stop > /dev/null 2>&1

Filling the List of Files

157

/sbin/chkconfig --del ypbind

fi

exit 0

%postun

if ["$1" -ge 1]; then

/sbin/service ypbind condrestart > /dev/null 2>&1

fi

exit 0

Few packages need to perform any work prior to installation, so the %pre script is rarely used.

In this example, the chkconfig command is called to update the runlevel information for system
services after installation and prior to removal. This is an example where just installing the application,
ypbind in this case, is not enough. Since this application acts as a system service, more work needs
to be done to finish the installation with the %pre script or clean up the service on removal with the
%preun script.

Warning

Do not try to write interactive scripts. Many users install RPMs automatically. In such cases, or if the
user runs a graphical RPM tool, any information your scripts output will be lost. User input will not be
available.

The rpm command will pass one argument to your scripts, shown as $1 in the previous example,
which holds a count of the number of versions of the package that are installed. Table 10-3 lists the
counts for specific cases.

Table 10-3 Install and uninstall script count values

Action Count

Install the first time 1

Upgrade 2 or higher (depending on the number of
versions installed)

Remove last version of package 0

The previous script example accesses the count using the shell variable $1.

9.5. Filling the List of Files
The %files section holds a list of all the files that RPM should install from the package. This list should
be exhaustive, so that the RPM system knows exactly what your package installs. There are some
options, though, to name all the files within a directory to help with packages containing hundreds of
files.

In the default case, each line under the %files section names a separate file with its full path. For
example:

Chapter 9. Working with Spec Files

158

%files

/usr/X11R6/bin/xtoolwait

/usr/X11R6/man/man1/xtoolwait.1

This example lists two files, /usr/X11R6/bin/xtoolwait and /usr/X11R6/man/man1/xtoolwait.1,
presumably an online manual files.

9.5.1. Using wildcards
In addition to naming each file on a line, you can use glob-style wildcards. For example:

%files

/usr/X11R6/bin/xtoolwait

/usr/X11R6/man/man1/xtoolwait.*

This example states that all files in /usr/X11R6/man/man1 that start with xtoolwait. should be included
in the package.

9.5.2. Naming directories of files
In addition to using wildcard globs, you can specify whole directories as part of your package. For
example:

%files

/usr/X11R6/bin/xtoolwait

/etc/xtoolwait

This example names all the files in the directory /etc/xtoolwait as part of the package. Be very careful
when listing this directory. Do not include a system directory such as /usr/bin, as RPM will assume
your package owns all of /usr/bin, which contains hundreds of commands. This can be a problem
when you try to remove a package.

It is OK to name a subdirectory that your package owns. For example, while /etc is a system
directory, /etc/xtoolwait is a reasonable directory for the xtoolwait package to control.

If you just want to include an empty directory in the package, and not the files within the directory, use
the %dir directive in front of the directory name. For example:

%files

/usr/X11R6/bin/xtoolwait

%dir /etc/xtoolwait

This example states that the package contains the /usr/X11R6/bin/xtoolwait program and the empty
directory /etc/xtoolwait.

In addition to the straight list of files or directories, RPM provides other options, starting with marking
certain files as documentation or configuration files.

Marking files as documentation or configuration files

159

9.5.3. Marking files as documentation or configuration files
RPM keeps special track of files within a package that hold documentation or configuration data. You
need to identify these files with special directives.

The %doc directive marks a file as a documentation file. For example:

%files

/usr/X11R6/bin/xtoolwait

%doc /usr/X11R6/man/man1/xtoolwait.*

This example lists all the included files in /usr/X11R6/man/man1 as documentation files.

If you don’t include the full path to a documentation file or files, the RPM system will create a special
documentation directory for the package, and place those files into that directory. For example:

%doc README NEWS

This example places the files README and NEWS into a newly created package-specific directory,
typically a subdirectory under /usr/share/doc or /usr/doc.

The %docdir directive names a directory that holds documentation. All files under that directory in the
package will get automatically marked as documentation files. For example:

%files

/usr/X11R6/bin/xtoolwait

%docdir /usr/X11R6/man/man1

/usr/X11R6/man/man1/xtoolwait.*

Note

In addition to the marked directories, the standard Linux documentation directories, such as /usr/
share/man, are automatically assumed to be documentation directories.

Similar to the %doc directive, the %config directive marks a file as configuration. For example:

%files

/sbin/ypbind

%config /etc/rc.d/init.d/*

%config /etc/yp.conf

%doc README NEWS

A special option to the %config directive, noreplace, tells RPM not to overwrite, or replace a
configuration file. For example:

%files

/sbin/ypbind

Chapter 9. Working with Spec Files

160

%config /etc/rc.d/init.d/*

%config(noreplace) /etc/yp.conf

%doc README NEWS

Use this option to help protect local modifications. If you use %config(noreplace), the file will not
overwrite an existing file that has been modified. If the file has not been modified on disk, the rpm
command will overwrite the file. But, if the file has been modified on disk, the rpm command will copy
the new file with an extra file-name extension of .rpmnew.

Similarly, %config(missingok) means that the file does not have to exist on disk. You can use this
modifier for files or links that are created during the %post scripts but will need to be removed if the
package is removed.

Another special modifier, %ghost, tells the rpm command that the file should not be included in the
package. You can use this to name the needed attributes for a file that the program, when installed,
will create. For example, you may want to ensure that a program’s log file has certain attributes.

9.5.4. Setting file attributes
When your package is installed, you can control the file attributes as well as the files that get included
into the package. This is very useful since most packages are installed by the root user and you don’t
always want the root user owning the files.

The %attr directive allows you to control the permissions for a particular file. The format is:

%attr(mode, user, group) filename

For example:

%attr(0644, root, root) /etc/yp.conf

This example sets the file permissions to 644, the user and the group to root. If you don’t need to
specify a value, use a dash, -, to leave the setting as is for the file. For example:

%attr(-, root, -) /etc/yp.conf

Note that you can combine directives, one after another. For example:

%config %attr(-, root, -) /etc/yp.conf

You can also use spaces instead of commas as delimiters. For example:

%attr(0700 root root) %dir /var/tux

In addition to using %attr to set the attributes for a file, you should use the %defattr directive to set the
default attributes for all files in the package. For example:

%files

%defattr(-,root,root)

/usr/X11R6/bin/xtoolwait

/usr/X11R6/man/man1/xtoolwait.*

Verifying the %files section

161

Just about every spec file uses the %defattr directive as this directive eliminates a lot of work you need
to do to set file attributes individually. In addition, using the %defattr directive is considered a best
practice when creating packages.

You can also mark files for a particular language. For example, from the tcsh shell package:

%files

%defattr(-,root,root)

%doc FAQ Fixes NewThings complete.tcsh eight-bit.txt tcsh.html

%{_bindir}/tcsh

%{_bindir}/csh

%{_mandir}/*/*

%lang(de) %{_datadir}/locale/de/LC_MESSAGES/tcsh*

%lang(el) %{_datadir}/locale/el/LC_MESSAGES/tcsh*

%lang(en) %{_datadir}/locale/en/LC_MESSAGES/tcsh*

%lang(es) %{_datadir}/locale/es/LC_MESSAGES/tcsh*

%lang(et) %{_datadir}/locale/et/LC_MESSAGES/tcsh*

%lang(fi) %{_datadir}/locale/fi/LC_MESSAGES/tcsh*

%lang(fr) %{_datadir}/locale/fr/LC_MESSAGES/tcsh*

%lang(it) %{_datadir}/locale/it/LC_MESSAGES/tcsh*

%lang(ja) %{_datadir}/locale/ja/LC_MESSAGES/tcsh*

%lang(pl) %{_datadir}/locale/pl/LC_MESSAGES/tcsh*

%lang(ru) %{_datadir}/locale/ru/LC_MESSAGES/tcsh*

%lang(uk) %{_datadir}/locale/uk/LC_MESSAGES/tcsh*

This example marks certain files as only being of use with particular languages, such as ja for the
Japanese text and fr for the French text.

9.5.5. Verifying the %files section
You can use the %verify directive to control which tests RPM uses when verifying a package.

Cross Reference

See Chapter 4, Using the RPM Database for more on package verification.

The %verify directive names the tests to include or not include. Table 10-4 lists the tests.

Table 10-4 Package verification tests

Test Usage

Chapter 9. Working with Spec Files

162

group Verifies the group of the file

maj Verifies the file’s major device number

md5 Verifies the file’s MD5 checksum

min Verifies the file’s minor device number

mode Verifies the file mode, or permissions

mtime Verifies the file’s last modification time

owner Verifies the owner of the file

size Verifies the file’s size

symlink Verifies a symbolic link

With the %verify directive, you can name test, such as shown following:

%verify(owner group size) /etc/yp.conf

This example limits the tests to owner, group, and size. (The default is to perform all the tests.) You
can also use the word not to specify that RPM should not run one or more tests. For example:

%verify(not owner) /etc/yp.conf

This example turns off just the owner test.

9.5.6. Filling the list of files automatically
The -f option to the %files section allows you to read in a list of file names from a file. This file is
assumed to look like the contents of the %files section, holding one file name per line. You can also
include the various directives for files such as %attr or %doc. For example:

%files -f list_of_filenames.txt

You can combine this list with filename entries, such as the following:

%files -f xconfig_files.txt

%defattr(-,root,root)

/usr/X11R6/bin/xtoolwait

/usr/X11R6/man/man1/xtoolwait.1

This example reads in a list of file names from the file named xconfig_files.txt and also includes two
additional files.

This list of files works best if you cannot determine the file names in advance. The build may create
different files based on various macro values. In addition, you may not know the final paths for the files
until build time.

9.5.7. Handling RPM build errors for unpackaged files
Starting with RPM 4.1, rpmbuild will exit if all files in the $RPM_BUILD_ROOT directory are not found
in the %files section (or in a file that lists file names used with the -f option). This is officially known as
a Fascist build policy and you can turn it off with the following macros.

Adding Change Log Entries

163

The %_unpackaged_files_terminate_build macro, if set to 1, tells rpmbuild to exit if it finds files that are
in the $RPM_BUILD_ROOT directory but not listed as part of the package. Set this macro to 0 to turn
off the Fascist build policy. For example:

%define _unpackaged_files_terminate_build 0

You can also control the flag that specifies whether missing documentation files cause rpmbuild to exit.
Set the %_missing_doc_files_terminate_build macro to 0 to turn off this feature:

%define _missing_doc_files_terminate_build 0

See the "Defining Spec File Macros" section later in the chapter for more on using macros.

Cross Reference

You can also store this setting in a macro file so that it applies for all packages you build. See
Chapter 20, Customizing RPM Behavior for more on macro files.

While the Fascist build policy may be an annoyance, it can prove very useful. Chances are your spec
file has an error if you have files in the $RPM_BUILD_ROOT directory that are not listed in the %files
section. The Fascist build policy helps catch these errors. In addition, since the error outputs a list of
files in the $RPM_BUILD_ROOT directory that are not listed in the %files section, you can often paste
this list into your %files section.

9.6. Adding Change Log Entries
The change log usually appears at the end of a spec file and is marked with %changelog. It holds
messages for each significant change. You should add a change log entry for each major change to
the application. For example, if you download a new version of the software you are packaging, add a
change log entry for the new version:

%changelog

* Fri Jun 21 2002 Bob Marley <marley@reggae.com>

- Downloaded version 1.4, applied patches

* Tue May 08 2001 Peter Tosh <tosh@reggae.com> 1.3-1

- updated to 1.3

9.7. Defining Spec File Macros
The RPM system defines a lot of handy macros so that your spec files can work regardless of where
system directories are located. You simply use the macro, such as %_bindir, in place of hard-coded
paths. The %_bindir macro, for example, identifies the default directory for binary executables, /usr/
bin.

Use these macros wherever possible to avoid hard-coded paths and settings.

9.7.1. Built-in macros
RPM includes a host of built-in macros, including the following useful directories:

Chapter 9. Working with Spec Files

164

%_prefix /usr

%_exec_prefix %{_prefix}

%_bindir %{_exec_prefix}/bin

%_sbindir %{_exec_prefix}/sbin

%_libexecdir %{_exec_prefix}/libexec

%_datadir %{_prefix}/share

%_sysconfdir %{_prefix}/etc

%_sharedstatedir %{_prefix}/com

%_localstatedir %{_prefix}/var

%_libdir %{_exec_prefix}/lib

%_includedir %{_prefix}/include

%_oldincludedir /usr/include

%_infodir %{_prefix}/info

%_mandir %{_prefix}/man

The example directories shown above come from the standard RPM macro file, /usr/lib/rpm/macros,
instead of the Red Hat-specific file, /usr/lib/rpm/redhat/macros, which holds:

%_prefix /usr

%_sysconfdir /etc

%_localstatedir /var

%_infodir /usr/share/info

%_mandir /usr/share/man

%_initrddir %{_sysconfdir}/rc.d/init.d

%_defaultdocdir %{_usr}/share/doc

9.7.2. Spec file-specific macros
Most of the pre-defined RPM macros hold directory paths or architecture information. RPM also
includes a set of useful macros that you can use to help debug problematic spec files and well as
perform common tasks in spec files. Table 10-5 lists these debugging and special spec file macros.

Table 10-5 Special spec-file macros

Macro Usage

%dump Prints out macro values

%{echo:message} Prints message to stderr

Defining new macros

165

%{error:message} Prints message to stderr and returns BADSPEC

%{expand:expression} Like eval, expands expression

%{F:file_exp} Expands file_exp to a file name

%global name value Defines a global macro

%{P:patch_exp} Expands patch_exp to a patch file name

%{S:source_exp} Expands source_exp to a source file name

%trace Toggles the printing of debugging information

%{uncompress:filename} Tests if file filename is compressed. If so,
uncompresses and includes in the given context.
If not compressed, calls cat to include file in
given context.

%undefine macro Undefines the given macro

%{warn:message} Prints message to stderr

Note

To see the current list of macros, put a %dump at the start of your spec file.

9.7.3. Defining new macros
In addition to the built-in macros, you can define your own to make it easier to manage your packages.
Define a new spec file macro with the following syntax:

%define macro_name value

For example:

%define major 2

%define minor 2

%define patchlevel 7

You can then use a macro with the %macro_name or %{macro_name} syntax. For example:

Version: %{major}.%{minor}.%{patchlevel}

You can also expand the results of running shell commands using a %(command) syntax with
parenthesis instead of curly braces. For example:

%define today %(date)

9.7.4. Specifying parameters to macros
Most macros perform simple text substitution. You can also pass parameters to macros, and access
those parameters within your macros, similarly to how shell scripts get command-line parameters.

Cross Reference

Chapter 14, Automating RPM with Scripts covers shell scripting with RPM.

With parameters, you can expand the normal definition of a macro to the following:

Chapter 9. Working with Spec Files

166

%define macro_name(options) value

Any text within the parenthesis is passed to getopt(3), and acts as parameters to the macro. This
is performed when the macro is expanded. You can also pass options to the macro using the
%macro_name syntax (without curly braces). For example:

%foo 1 2 3

This example passes the parameters 1, 2, and 3 to the macro foo. Inside the macro, you can use
a shell script-like syntax to access the parameters through special macros. Table 10-6 lists these
macros.

Table 10-6 Parameter macros inside a macro expansion

Macro Holds

%0 The name of the macro

%* All the parameters to the macro, except for any
processed options

%# The number of parameters

%1 The first parameter

%2 The second parameter

%3 The third parameter, and so on with %4, %5 and
beyond

%{-p} Holds -p if the -p parameter was passed to the
macro; otherwise holds nothing

%{-p*} Holds the value passed with the -p parameter,
if the -p parameter was passed to the macro;
otherwise holds nothing

%{-p:text} Holds text if the -p parameter was passed to the
macro; otherwise holds nothing

Note that all parameters listed in Table 10-6 hold the remaining parameters after getopt(3) processing.
You can use these macros within the definition of your own macros. You can also nest macros, such
as the following:

%define mypatch() patch %{-p:-p%{-p*}}

This macro expands to the patch command if no -p parameter was passed. If you pass a -p parameter,
such as -p 1, then the macro expands to -p with the value of the -p parameter:

patch -p1

Note

This type of syntax is used heavily with the patch command.

9.8. Creating XML Spec Files
RPM spec files are text files containing structured information. It is a natural progression to write RPM
spec files using XML. The tool rpmxmlbuild will build an RPM package from an XML-formatted spec
file.

Creating XML Spec Files

167

For example, Listing 10-1 holds a spec file in XML format.

Listing 10-1: An XML spec file.

<?xml version="1.0"?>

<spec distribution="RPM Test" vendor="rpm.org"

name="bash" version="2.05a" release="02test"

copyright="GPL"

url="http://www.gnu.org/software/bash/bash.html">

<source name="%{name}-%{version}.tar.bz2"

size="1434025" md5="c29b50db808003e39558a0f6354f4cad"

path="%{name}-%{version}">

</source>

<buildrequires>

<require name="bash" />

<require name="gcc" />

<require name="make" />

</buildrequires>

<!-- packages -->

<package group="System/Base" autoreqprov="no">

<requires>

<require name="glibc" />

</requires>

<summary>The Bash package contains the bash program.</summary>

<description>%{summary}

Bash is the Bourne-Again SHell, which is a widely used command interpreter

on Unix systems. Bash is a program that reads from standard input, the

keyboard. A user types something and the program will evaluate what he has

typed and do something with it, like running a program.</description>

<files list="%{name}.files.lst" />

Chapter 9. Working with Spec Files

168

</package>

<package name="bash-doc" group="Documentation/System/Base" autoreqprov="no">

<requires>

<require name="%{name}" />

</requires>

<summary>Documentation for the bash package.</summary>

<description>%{summary}</description>

<pre script="%{name}-doc.pre.sh" />

<files list="%{name}-doc.files.lst" />

</package>

<!-- scripts to create the package -->

<prep script="%{name}.prep.sh">

<setup />

<script>echo "Prep completed"</script>

</prep>

<build script="%{name}.build.sh" />

<install script="%{name}.install.sh" />

<clean script="%{name}.clean.sh" />

<!-- changelog -->

<changelog>

<changes date="Mon Aug 26 2002" version="2.05a-02test"

author="" author-email="">

<change>Added setup macro to extract files</change>

<change>Initial version ready for jbj</change>

</changes>

</changelog>

</spec>

Note

Summary

169

XML spec files are a very experimental feature. Future releases of RPM will likely provide more
support for XML spec files. The format will likely change.

9.9. Summary
This chapter covers spec files, the files that define how to build packages. Start your spec file by
defining package information, such as the name, version, and release number. You can also add a
detailed description to help administrators decide whether to install your packages.

You need to name all of the source and patch files used to build the package. In most cases, the
source files are compressed tar archives. After naming all the sources and patches, you need to
control how the rpmbuild command should build your package. This comes in four sections.

The %prep section prepares for the build by extracting the source files and applying patches. The
%build section defines the commands to build the software, normally something as simple as running
a configure script and then the make command. The %install section contains the commands for
installing the software. And, the %clean section provides commands to clean up after the build.

For these sections, you can use handy RPM macros for common tasks, such as running the configure
script or the make install command. You can also define scripts the rpm command should run before
and after installing, as well as before and after removing the package.

Spec files contain a listing of all the files that should go into the package, as well as where those files
should be placed on the user’s hard disk.

You can define RPM macros in your spec files to make commands that can work with different
directory structures as well as simplify common commands.

While it may seem that this chapter described a great many options for making spec files, there’s more
to come. The next chapter covers advanced spec file topics such as triggers, conditional builds, and
specifying dependencies.

170

Chapter 10.

171

Advanced RPM Packaging
This chapter covers:

• Defining package dependency information

• Setting triggers

• Writing verification scripts

• Creating subpackages

• Creating relocatable packages

• Defining conditional builds

The previous chapter introduced the RPM spec file, which controls how RPM packages are built and
installed. This chapter delves into advanced spec file topics such as using conditional commands and
making relocatable packages, starting with how to specify package dependencies.

10.1. Defining Package Dependencies
Dependencies are one of the most important parts of the RPM system. The RPM database tracks
dependencies between packages to better allow you to manage your system. A dependency occurs
when one package depends on another. The RPM system ensures that dependencies are honored
when upgrading, installing, or removing packages. From that simple concept, RPM supports four types
of dependencies:

*Requirements, where one package requires a capability provided by another

*Provides, a listing of the capabilities your package provides

*Conflicts, where one package conflicts with a capability provided by another

*Obsoletes, where one package obsoletes capabilities provided by another, usually used when a
package changes name and the new package obsoletes the old name

Cross Reference

Chapter 5, Package Dependencies covers more on dependencies. The Obsoletes dependencies
are usually only used when a package is renamed, such as the apache package becoming the httpd
package, starting in Red Hat Linux 8.0. The httpd package obsoletes the apache package.

You can list all of these dependencies in your spec file. The most commonly used dependency
information, though, is what a package requires.

10.1.1. Naming dependencies
In your spec files, you can name the dependencies for your package. The basic syntax is:

Requires: capability

In most cases, the capability should be the name of another package. This example sets up a requires
dependency. This means that the package requires the given capability. Use a similar syntax for the
other kinds of dependencies:

Chapter 10. Advanced RPM Packaging

172

Provides: capability

Obsoletes: capability

Conflicts: capability

You can put more than one capability on the dependency line. For example:

Requires: bash perl

You can use spaces or commas to separate the capabilities. For example:

Requires: bash, perl

10.1.1.1. Specifying the Version of the Dependencies
You can also add version information, for example:

Requires: bash >= 2.0

This states that the package requires the capability bash (a package) at version 2.0 or higher. The
same logic applies to the other types of dependencies. For example:

Conflicts: bash >= 2.0

This example states that the package conflicts with all versions of bash 2.0 or higher.

Table 11-1 lists the version comparisons you can use.

Table 11-1 Dependency version comparisons

Comparison Meaning

package < version A package with a version number less than
version

package > version A package with a version number greater than
version

package >= version A package with a version number greater than or
equal to version

package <= version A package with a version number less than or
equal to version

package = version A package with a version number equal to
version

package A package at any version number

RPM supports an extended version number syntax for comparisons. The full format follows:

Epoch:Version-Release

For example:

1:5.6.0-17

In this case, the epoch is 1, the version 5.6.0, and the release is 17. In most cases, you will need just
the version number. The epoch allows for handling hard-to-compare version numbers. The release

Setting prerequisites

173

number is almost never used. This makes sense, in that it ties a dependency to a particular build of
the RPM package, rather than a version of the software itself. This type of dependency would only be
useful if you drastically changed the way you build a package.

10.1.1.2. Creating Virtual CAPABILITIES
Dependencies are based on capabilities, most of which are packages. You can create virtual
capabilities, which are just names you define. For example, the sendmail package provides a virtual
capability named smtpdaemon. For example:

Provides: smtpdaemon

This capability refers to the general SMTP Internet service for sending e-mail messages. There is no
file of this name. Instead, it is just a capability, arbitrary text. Other packages require this capability,
such as the fetchmail mail-retrieval and forwarding application, and mutt, an e-mail client program.

By using a virtual capability, other packages can provide the capability, and most importantly, client
applications can require the capability without worrying which package provides the ability to send e-
mail messages. For example, the exim and postfix packages, mail transport agents like sendmail, can
provide the same capability.

Note

Of course, you want to ensure that these packages specify that they conflict with each other.

10.1.1.3. Naming Dependencies on Script Engines and Modules
Scripting languages such as Perl and Tcl allow for add-on modules. Your package may require some
of these add-on modules. RPM uses a special syntax with parenthesis to indicate script module
dependencies. For example:

Requires: perl(Carp) >= 3.2

This indicates a requirement for the Carp add-on module for Perl, greater than or equal to version 3.2.

10.1.2. Setting prerequisites
A prerequisite is similar to a require dependency, except that a prerequisite must be installed prior to a
given package. Specify a prerequisite as follows:

PreReq: capability

You can include version-number dependencies, such as:

PreReq: capability >= version

In most usage, a PreReq: acts just like Requires:, in fact, the PreReq: directive exists just to allow for a
manual order to dependencies. RPM guarantees that the PreReq: package will be installed prior to the
package that names the PreReq: dependency.

Cross Reference

Chapter 13, Packaging Guidelines covers a common problem of handling circular dependencies using
prerequisites.

Chapter 10. Advanced RPM Packaging

174

10.1.3. Naming build dependencies
Your package, once built, has a set of dependencies. These dependencies are important for anyone
installing the package. But there are also dependency issues when trying to build packages. Build
dependencies allow you to specify what is necessary to build the package. While you may think this
would be the same as what is needed to install a package, this is normally not true. Linux distributions
tend to divide up software into runtime and development packages. For example, the python package
contains the runtime for executing scripts written in Python. The python-devel package provides the
ability to write extensions to the Python language.

RPM allows you to define build-time dependencies in your spec files using the following directives:

BuildRequires:

BuildConflicts:

BuildPreReq:

These directives act like Requires:, Conflicts:, and PreReq:, respectively, except that the
dependencies are needed to build the package, not install it. For example, your package may require
a C compiler to build, or may need a special build tool or developer library.

10.1.4. Generating dependencies automatically
Because so many dependencies are related to shared libraries, the RPM system will automatically
generate provide dependencies for any file in your packages that is a shared object, or .so, file. RPM
will also automatically generate require dependencies for all files in the %files list that require shared
libraries. To do this, RPM uses the ldd command, which determines the shared libraries used by an
application.

In addition, the find-requires and find-provides scripts in /usr/lib/rpm can determine Perl, Python and
Tcl script dependencies and other dependencies, such as Java package dependencies, automatically.
The find-requires script determines requires dependencies automatically, and the find-provides script
determines provides dependencies.

Cross Reference

Chapter 13, Packaging Guidelines covers how to turn off the automatic generation of dependencies.

10.2. Setting Triggers
Triggers provide a way for one package to take action when the installed status of another package
changes. A trigger is a script you define in your package’s spec file that gets run by the RPM system
when the status of another named package changes. If your package depends in some way on
another package, a trigger can allow your package to deal with changes to the other package.

Triggers are not a replacement for package dependencies. Instead, triggers are useful when you need
to change a package’s installation based on other packages installed on the system. For example, if
your package is a mail client program, your package will need to have a mail transfer agent, or MTA.
Linux supports a number of different mail transfer agents, such as sendmail, vmail, exim, qmail, and
postfix.

Typically a system will have one mail transfer agent installed. In most cases, a mail client won’t care
which MTA is installed, as long as one is installed. (In fact, most of these packages should be marked
that they conflict with one another, ensuring that a given system can only have one.)

Setting Triggers

175

The %triggerin script is run when a given target package is installed or upgraded. The %triggerin script
is also run when your package is installed or upgraded, should the target package be already installed.
Similarly, the %triggerun script is run if the target package is removed. It is also run if your package is
removed and the target package is installed. The %triggerpostun script is run after the target package
has been removed. It is not run if your package is removed.

To define one of these scripts, you need to list the name of the target package; for example:

%triggerin -- tcsh

script commands...

This example sets up a trigger for the tcsh package. If the tcsh package is installed or upgraded, RPM
will run the script. If your package is installed or upgraded and the tcsh package is presently installed,
RPM will also run the script.

Define the %triggerun script similarly:

%triggerun -- tcsh

script commands...

You can also use version numbers in the trigger script definition to only run the script in the case of a
particular version. For example:

%triggerpostun -- vixie-cron < 3.0.1-56

/sbin/chkconfig --del crond

/sbin/chkconfig --add crond

This example, from the vixie-cron scheduling package, runs a post-uninstall trigger for the same
package, but for older versions. To define trigger scripts for particular versions, use the same syntax
as for requires dependencies for naming the version number and comparisons.

Triggers are run through /bin/sh, the most commonly used shell script engine. With the -p option,
though, you can specify a different script interpreter. For example, to write a Perl script, define your
trigger like the following:

%triggerpostun -p /usr/bin/perl -- vixie-cron < 3.0.1-56

system("/sbin/chkconfig --del crond");

system("/sbin/chkconfig --add crond");

With subpackages, defined following, you can use a -n option to tie the trigger script to a subpackage.
For example:

%triggerpostun -n subpackage_name -- vixie-cron < 3.0.1-56

/sbin/chkconfig --del crond

/sbin/chkconfig --add crond

Inside your trigger scripts, $1, the first command-line argument, holds the number of instances of
your package that will remain after the operation has completed. The second argument, $2, holds

Chapter 10. Advanced RPM Packaging

176

the number of instances of the target package that will remain after the operation. Thus, if $2 is 0, the
target package will be removed.

The anonftp package, mentioned in Chapter 5, Package Dependencies , has a lot of triggers. Many of
these set up a number of commands to be locally available to the anonftp package. This networking
package is also closely tied to the version of the C library, glibc, as shown in Listing 11-1

Listing 11-1: Anonftp package trigger scripts.

%triggerin -- glibc

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

Kill off old versions

rm -f /var/ftp/lib/ld-* /var/ftp/lib/libc* /var/ftp/lib/libnsl* /var/ftp/lib/lib

nss_files* &>/dev/null || :

Copy parts of glibc, needed by various programs in bin.

LIBCVER=`basename $(ls --sort=time /lib/libc-*.so |head -n 1) .so |cut -f2- -d-`

copy /lib/ld-${LIBCVER}.so /var/ftp/lib

copy /lib/libc-${LIBCVER}.so /var/ftp/lib

copy /lib/libnsl-${LIBCVER}.so /var/ftp/lib

copy /lib/libnss_files-${LIBCVER}.so /var/ftp/lib

md5sum /var/ftp/lib/lib*-*.so /var/ftp/lib/libtermcap.so.*.*.* 2>/dev/null >/var

/ftp/lib/libs.md5

chmod 0400 /var/ftp/lib/libs.md5

Use ldconfig to build symlinks and whatnot.

[! -e /var/ftp/etc/ld.so.conf] && touch /var/ftp/etc/ld.so.conf

/sbin/ldconfig -r /var/ftp

%triggerin -- fileutils

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/ls /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

Setting Triggers

177

%triggerin -- cpio

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/cpio /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

%triggerin -- tar

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/tar /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

%triggerin -- gzip

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /bin/gzip /var/ftp/bin

ln -sf gzip /var/ftp/bin/zcat

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

%triggerin -- libtermcap

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

rm -f /var/ftp/lib/libtermcap.so.*.*.* &>/dev/null || :

copy '/lib/libtermcap.so.*.*.*' /var/ftp/lib

md5sum /var/ftp/lib/lib*-*.so /var/ftp/lib/libtermcap.so.*.*.* 2>/dev/null >/var

/ftp/lib/libs.md5

chmod 0400 /var/ftp/lib/libs.md5

Use ldconfig to build symlinks and whatnot.

[! -e /var/ftp/etc/ld.so.conf] && touch /var/ftp/etc/ld.so.conf

Chapter 10. Advanced RPM Packaging

178

/sbin/ldconfig -r /var/ftp

%triggerin -- ncompress

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

copy /usr/bin/compress /var/ftp/bin

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

%triggerpostun -- anonftp 4.0

if ["$2" != 1] ; then

The user has multiple glibc packages installed. We can't read the

user's mind, so don't do anything.

exit 0

fi

copy() { file="`ls --sort=time $1 |head -n 1`"; ln -f "$file" "$2" 2>/dev/null |

| cp -df "$file" "$2"; }

Kill off old versions

rm -f /var/ftp/lib/ld-* /var/ftp/lib/libc* /var/ftp/lib/libnsl* /var/ftp/lib/lib

nss_files* &>/dev/null || :

Copy parts of glibc, needed by various programs in bin.

LIBCVER=`basename /lib/libc-*.so .so | cut -f2- -d-`

copy /lib/ld-${LIBCVER}.so /var/ftp/lib

copy /lib/libc-${LIBCVER}.so /var/ftp/lib

copy /lib/libnsl-${LIBCVER}.so /var/ftp/lib

copy /lib/libnss_files-${LIBCVER}.so /var/ftp/lib

copy /bin/ls /var/ftp/bin

copy /bin/cpio /var/ftp/bin

copy /bin/tar /var/ftp/bin

copy /bin/gzip /var/ftp/bin

ln -sf gzip /var/ftp/bin/zcat

Writing Verification Scripts

179

copy /usr/bin/compress /var/ftp/bin

rm -f /var/ftp/lib/libtermcap.so.*.*.* &>/dev/null || :

copy '/lib/libtermcap.so.*.*.*' /var/ftp/lib

Use ldconfig to build symlinks and whatnot.

[! -e /var/ftp/etc/ld.so.conf] && touch /var/ftp/etc/ld.so.conf

/sbin/ldconfig -r /var/ftp

Generate md5sums for verifyscript

md5sum /var/ftp/lib/lib*-*.so /var/ftp/lib/libtermcap.so.*.*.* 2>/dev/null >/var

/ftp/lib/libs.md5

chmod 0400 /var/ftp/lib/libs.md5

md5sum `ls /var/ftp/bin/* |grep -v bin.md5` >/var/ftp/bin/bin.md5

chmod 0400 /var/ftp/bin/bin.md5

10.3. Writing Verification Scripts
RPM automatically handles package verification, checking to see that the proper files are installed,
and testing the files themselves for the proper size and other attributes. You may need to do more in
your package, though, to ensure everything is properly set up. With RPM, you can:

*Control the tests used to verify each file, as described in Chapter 9, Working with Spec Files

*Create a verify script that performs other tests

If you need to perform some other test to verify your package, such as check that a configuration
file has a particular setting (and that the setting is valid), you can fill in the %verifyscript in the spec
file. The %verifyscript acts much like the %pre or %post scripts, except that the %verifyscript gets
executed during package verification. Fill in a %verifyscript as follows:

%verifyscript

your script commands

Common %verifyscript actions are to check for an entry in a system configuration file, such as
an init-time startup script or /etc/shells (which lists the available shells). These are files owned by
other packages that may need to be properly modified for a package to be properly installed. If your
package has a similar circumstance, write a %verifyscript. In your script, send all error output to stderr.

Cross Reference

See Chapter 4, Using the RPM Database for more on package verification.

10.4. Creating Subpackages
A spec file may define more than one package. This type of additional package is called a
subpackage. Subpackages exist to handle cases where you don’t want to associate one spec file with

Chapter 10. Advanced RPM Packaging

180

one package. Instead, you can define multiple packages within the spec file, as needed. For example,
you may want to build the runtime and developer packages together, or the client and server portions
of an application using subpackages. Splitting large documentation sets into separate subpackages is
also common.

With subpackages, you get:

*One spec file

*One source RPM

*One set of build commands

*Multiple binary RPMs, one per package or subpackage

In most cases, subpackages are created just as a means to partition the files produced by a package
into separate packages. For example, you will often see development libraries and header files split
into a separate package from the main application package. Sometimes documentation is split out into
a separate package, or client and server applications are divided into separate packages. In the end,
though, this usually results in shifting files into subpackages and nothing more.

To define a subpackage within a spec file, you start with the %package directive. For example:

%package sub_package_name

By default, the name of the subpackage will be the name of the package, a dash, and the subpackage
name provided with the %package directive. For example:

%package server

This example names a subpackage server, which is a real subpackage inside the telnet package.
In this case, the name for the server subpackage will be telnet-server, that is, the naming format is
package-subpackage.

If you don’t want this naming format, you can use the –n option to the %package directive to define an
entirely new name, using the following syntax:

%package -n new_sub_package_name

For example:

%package –n my-telnet-server

With the –n option, you specify the full name for the subpackage. The RPM system will not prefix the
name with the enclosing package name.

10.4.1. Providing information for subpackages
When you define a subpackage, you need to provide as many of the package information directives as
you need, including at the least Summary:, Group:, and %description directives. Anything not specified
will use the parent package’s value, such as the version. Place these directives after the %package
directive. For example:

%package server

Requires: xinetd

Providing information for subpackages

181

Group: System Environment/Daemons

Summary: The server program for the telnet remote login protocol.

The %description directive for subpackages requires the name of the subpackage using the following
syntax:

%description subpackage

For example:

%description server

Telnet is a popular protocol for logging into remote systems

over the Internet. The telnet-server package includes a telnet daemon that supports remote logins into
the host machine. The

telnet daemon is enabled by default. You may disable the telnet

daemon by editing /etc/xinetd.d/telnet.

If you used the –n option with the %package directive, you need to repeat the –n option with the
%description directive. For example:

%description –n my-telnet-server

Telnet is a popular protocol for logging into remote systems

over the Internet. The telnet-server package includes a telnet daemon that supports remote logins into
the host machine. The

telnet daemon is enabled by default. You may disable the telnet

daemon by editing /etc/xinetd.d/telnet.

The same concept works for the %files section. You need a separate %files section for each
subpackage. For example:

%files server

%defattr(-,root,root)

%{_sbindir}/in.telnetd

%{_mandir}/man5/issue.net.5*

%{_mandir}/man8/in.telnetd.8*

%{_mandir}/man8/telnetd.8*

Again, if you used the –n option with the %package directive, you need to repeat the –n option with the
%files section. For example:

%files –n my-telnet-server

%defattr(-,root,root)

Chapter 10. Advanced RPM Packaging

182

%{_sbindir}/in.telnetd

%{_mandir}/man5/issue.net.5*

%{_mandir}/man8/in.telnetd.8*

%{_mandir}/man8/telnetd.8*

10.4.2. Defining scripts for subpackages
Much as you define separate %files and %description sections for subpackages, you can also
define install and uninstall scripts for subpackages. The syntax is similar to that for the %files and
%description sections:

%pre subpackage

For example, Listing 11-2 shows the scripts from the VNC package.

Listing 11-2: VNC package install and uninstall scripts.

%post server

if ["$1" = 1]; then

/sbin/chkconfig --add vncserver

fi

%preun server

if ["$1" = 0]; then

/sbin/service vncserver stop >/dev/null 2>&1

/sbin/chkconfig --del vncserver

fi

%postun server

if ["$1" -ge "1"]; then

/sbin/service vncserver condrestart >/dev/null 2>&1

fi

10.4.3. Building subpackages
The build sections in the spec file serve double duty. These sections are used for building the main
package as well as subpackages. This is one reason why there are so many options on the %setup
macro.

The %setup macro allows for selectively unpacking the sources, rather than the default option of
unpacking all the sources. For example, the following %setup macro definition gives rpmbuild specific
instructions for unpacking one source file:

Creating Relocatable Packages

183

%setup –D- T –a 1

In this example, the –D option disables the automatic deletion of the directory where the sources will
be unpacked. This means any previous contents of this directory, perhaps for other subpackages, will
be left alone. The –T option disables the automatic unpacking of the source files, and the –a 1 option
specifies to only unpack the first source file. You may need to use options like these when working with
subpackages. Though, in most cases, subpackages are just means to partition the package files into
separate packages. In cases like this, you will likely not need any of these special %setup options.

Cross Reference

Chapter 9, Working with Spec Files covers the %setup macro and lists the available options.

10.5. Creating Relocatable Packages
A relocatable package allows a user to specify where to install the package. For example, if you build
a package for Red Hat Linux, the normal directory for binary executable programs is /usr/bin. Other
versions of Linux, though, may place executable programs into /opt/bin, for example. If your package
forces the use of /usr/bin, then your package won’t work on these other systems.

Cross Reference

Chapter 18, Using RPM on Non-Red Hat Linuxes covers using RPM on other versions of Linux.

With a relocatable package, though, you allow the user to redefine the top-level directories for your
package, such as changing from /usr/bin to /opt/bin in the previous example. Making relocatable
packages is generally considered a good thing, as you make the user’s life easier.

To set up a relocatable package, you need to:

*Set up the prefix directives for the top-level directories

*Define the files under the prefix directories

10.5.1. Setting up the prefixes
The Prefix: directive names a top-level directory as a prefix you can relocate to another directory. For
example:

Prefix: /usr

This states that all files under /usr can be relocated to other directories by simply mapping /usr
to some other directory, such as /opt, on the rpm command line when installing or upgrading the
package.

Note

You can define more than one Prefix: directive to list more than one top-level directory.

10.5.2. Define the files section
When you use a Prefix: directive in your spec file, all files in the %files section must be under the
directory named with the Prefix: directive. For example, from the jikes compiler package:

Prefix: /usr

Chapter 10. Advanced RPM Packaging

184

...

%files

%defattr(-,root,root)

/usr/bin/jikes

%doc /usr/doc/jikes-%{version}/license.htm

%doc /usr/man/man1/jikes.1*

In this example, all the files are under the /usr directory. All files in the %files section must be located
under one of the Prefix: directories. If you have more than one top-level directory, such as /usr and /
etc, define more than one Prefix: directive. For example:

Prefix: /usr

Prefix: /etc

Cross Reference

Chapter 3, Using RPM covers how to install or upgrade packages into different directories using the --
relocate and --prefix options.

10.5.3. Problems creating relocatable packages
Not all packages work well as relocatable packages. Some packages have files that simply must go
into a certain location and are therefore not relocatable. Some packages have programs that are hard-
coded to look for files in a particular location and therefore cannot be relocated elsewhere. Other
packages have symbolic links that also may not be relocatable. Furthermore, your package may
provide software that is referenced by other packages, in the known directories. Relocating such a
package will disable other software packages, packages you may not even know about.

If your packages face any of these problems, chances are that making the package relocatable is not
a good idea.

In addition, if you use the %doc directive with local file names, remember that RPM will make a
package-specific documentation directory, normally under /usr/doc. For example:

%doc README NEWS

This may defeat your attempts to create a relocatable package, unless you have a Prefix: directive
with /usr, because the normal location is under /usr/doc, and all files in the %files section must start
with one of the directories named with Prefix: directives.

10.6. Defining Conditional Builds
With the ability to define macros inside spec files, and also to use macros defined elsewhere, you
gain a lot of control over how your package gets built. You can go further, though, and use special
directives to perform only certain commands based on certain conditions. This adds a powerful
capability to your spec files, and also makes it much easier to do things like build for multiple versions
of Linux or other operating systems, as well as handle various backwards-compatibility issues.

Defining conditional macros

185

To define conditional build commands, you need to create conditional constructs in your package’s
spec file. In addition, you need to define macros that the conditional constructs use to determine
whether or not to execute a set of spec file directives.

Cross Reference

See Chapter 20, Customizing RPM Behavior for more on macro file locations, and Chapter 18, Using
RPM on Non-Red Hat Linuxes and Chapter 19, RPM on Other Operating Systems for more on using
RPM on other versions of Linux and other operating systems, respectively.

RPM supports a number of ways to make parts of your spec file enabled or disabled based on certain
conditions. These include conditional macros, conditional blocks, and special directives based on the
system architecture.

10.6.1. Defining conditional macros
You can use a special syntax to test for the existence of macros. For example:

%{?macro_to_test: expression}

This syntax tells RPM to expand the expression if the macro macro_to_test exists. If the macro
macro_to_test does not exist, nothing will be output. You can also reverse this test. A leading
exclamation point, !, tests for the non-existence of a macro:

%{!?macro_to_test: expression}

In this example, if the macro_to_test macro does not exist, RPM will expand the expression.

If you want, you can omit the expression and just test for the existence of the macro. If it exists, RPM
will use the value of the macro. If the macro does not exist, RPM will use nothing. For example:

%build

./configure %{?_with_ldap}

make

In this case, if the _with_ldap macro exists, the value of that macro will get passed on the command
line to the configure script. If the _with_ldap macro does not exist, nothing extra will be passed on the
command line to the configure script. This is very important when creating commands to build or install
packages.

Cross Reference

Many of the macros you will test this way are set up with the --with command-line parameter. See
Chapter 18, Using RPM on Non-Red Hat Linuxes for details.

10.6.2. Using conditional blocks
The %if macro enables all the directives up to the %endif directive, if the condition is true. This is much
like scripting languages. For example:

%if %{old_5x}

%define b5x 1

Chapter 10. Advanced RPM Packaging

186

%undefine b6x

%endif

In this case, if the %old_5x macro has a value, the test will be true and all the directives inside the
block will get executed.

A %else allows you to specify what to do if the test is not successful. For example:

%if %{old_5x}

%define b5x 1

%undefine b6x

%else

%define b6x 1

%undefine b5x

%endif

In this case, if the %old_5x macro has a value, then all the directives up to the %else will get
executed. Otherwise, if the %old_5x macro has no value, the directives from the %else to the %endif
will get executed.

Again, use an exclamation point to negate the test. For example:

%if ! %{old_5x}

%define b5x 1

%undefine b6x

%endif

You can use a && for an AND test. For example:

%if %{old_5x} && %{old_6x}

%{error: You cannot build for .5x and .6x at the same time}

%quit

%endif

10.6.3. Using architecture-based conditionals
In addition to the general-purpose %if conditional directive, you can use special directives that test for
processor architecture and operating system.

The %ifarch directive enables all the directives up to the %endif directive, if the processor architecture
matches the values you pass to the %ifarch directive. For example:

%ifarch sparc

%define b5x 1

Using architecture-based conditionals

187

%undefine b6x

%endif

This block will only get executed if the processor architecture is SPARC.

Cross Reference

Chapter 20, Customizing RPM Behavior covers RPM architecture and operating system names.

You can pass more than one architecture name, separated by commas or spaces. For example:

%ifarch sparc alpha

%define b5x 1

%undefine b6x

%endif

This example tests if the processor architecture is SPARC or Alpha.

As with the %if directive, you can also use an %else, to cover all cases where the test is not true. For
example:

%ifarch sparc alpha

%define b5x 1

%undefine b6x

%else

%define b6x 1

%undefine b5x

%endif

This example tests if the processor architecture is SPARC or Alpha. If so, the directives from the
%ifarch to the %else are executed. If not, the directives from the %else to the %endif are executed.

The %ifnarch directive reverses the %ifarch test. That is, %ifnarch tests if the architecture is not one of
the values listed. The following example tests if the processor architecture is not an i386 or an Alpha.

%ifnarch i386 alpha

%define b5x 1

%undefine b6x

%endif

The %ifos directive tests for the operating system. For example:

%ifos linux

Chapter 10. Advanced RPM Packaging

188

%define b5x 1

%undefine b6x

%endif

This example tests if the operating system is Linux. You can reverse the test with the %ifnos directive.
For example:

%ifnos irix

%define b5x 1

%undefine b6x

%endif

This example tests if the operating system is not Irix.

10.7. Summary
This chapter covers advanced topics in creating packages. Dependencies are very important. You
need to specify which packages or capabilities your package requires, so the RPM system can ensure
that all requirements are met before allowing users to install the package. If you do not specify the
dependencies properly, then you are defeating the integrity of the RPM system.

In addition to specifying what your package requires, it is also important to specify other dependency
information. For example, if your package conflicts with another package, you need to very clearly
state this. E-mail and Web server packages often conflict with other servers of the same type.

You can specify both package dependencies as well as build dependencies. For example, you
may need certain developer libraries to build your package, but not to install it. These are build
dependencies.

To help manage dependencies between packages and system configuration issues, you can set
up trigger scripts. A trigger is a script in your package that gets executed when another package is
installed or removed. If your package, for example, is an e-mail client program, it may need to execute
a script should the e-mail server package change. This is a great usage for triggers.

If your package has a complicated installation, the normal RPM verification won’t be sufficient. To help
the RPM system ensure the integrity of all the packages, you can write a verify script in your spec file
to perform any extra commands necessary to verify your package has been properly installed.

Relocatable packages allow users to install your packages in different locations than originally
planned. This is very useful when working with more than one version of Linux, or with other operating
systems. For example, most Linux commands are stored in /usr/bin, at least for Red Hat Linux. Other
Linux distributions, or other operating systems may specify that programs added to the original set
should be stored in /opt/bin and not /usr/bin, for example. Making your package relocatable helps
users in these situations.

Conditional directives in your spec file allow you to control the build on different processor
architectures and operating systems. The %if directive tests if a value is set. If so, then all the
directives up to the %endif directive are executed. If you need to execute a different set of directives,
use %else. In this case, if the %if test is true, RPM executes the directives up to the %else. If the test
is not true, RPM executes the directives up to the %endif.

Summary

189

Once you have your spec file defined, the next step is to start building packages. The next chapter
covers options for the rpmbuild command and how you can use rpmbuild to make your packages.

190

Chapter 11.

191

Controlling the Build with rpmbuild
This chapter covers:

• Building with the rpmbuild command

• Building RPMs without an external spec file

• Working with source RPMs

• Optimizing builds

• Signing built RPMs

The preceding chapters in this Part cover details on how to put together RPMs. This chapter rounds
out the discussion by delving into more details on the rpmbuild command.

You can customize how rpmbuild creates RPMs, and you can use RPM commands to test and debug
your package.

11.1. Building RPMs with the rpmbuild Command
The rpmbuild command provides a workhorse command for building RPMs in all sorts of ways. The
basic syntax, as shown in Chapter 8, Creating RPMs: An Overview, is:

rpmbuild -bBuildStage spec_file

The BuildStage is a letter, such as c, to prepare and compile the application, executing through the
%build section, or i, to execute through the %install section. This allows you a good deal of flexibility
for building the entire RPM or stopping at some point prior to a full build.

There’s more to the rpmbuild command, though. Quite a few additional options allow you to further
customize the build.

Note

As mentioned in Chapter 8, Creating RPMs: An Overview , previous versions of the RPM system used
the rpm command with a -b, for build, option. This option is no longer supported. Use the rpmbuild
command to build RPMs.

11.1.1. Customizing the build
You can customize the rpmbuild command with the options listed in Table 12-1.

Table 12-1 Extra build options for the rpmbuild command

Option Usage

--buildroot directory Override the default root directory for building
with directory, generally not very useful since
most packages already name a buildroot

--clean Remove the build tree after building

--nobuild Just test the spec file and do not run the build

Chapter 11. Controlling the Build with rpmbuild

192

--rmsource Remove the sources after the build

--rmspec Remove the spec file after the build

--short-circuit With the -bc or -bi options, jump directly to the
given stage and resume the build from that stage

--sign Sign the package with a GPG signature

--target platform Build for the given platform. May not work if you
don't have the other platform build commands,
such as cross compilers, set up. Can work for
Intel platforms with i386, i686, and so on.

11.1.2. Testing the build
One of the most useful options is --nobuild, which tells the rpmbuild command to not build anything.
This may seem silly, but the --nobuild option is very useful for testing whether your RPMs can be built.
With the --nobuild option, the rpmbuild command parses the spec file and checks for errors, but does
not run any of the build stages.

The --buildroot allows you to specify a different top-level directory for building, overriding the BuildRoot
tag in the spec file. This means you can build in a separate location, which is helpful in case there are
mistakes. Using a separate directory means the build won’t get mixed with anything else in the build
root directory.

11.1.3. Debugging the build
The --short-circuit option tells the rpmbuild command to restart at a particular location in the build.
Rather than working its way through all the steps up to the build stage you ask for, the --short-circuit
option allows the rpmbuild command to restart just at the step you ask for.

Note

This works with the -bc and -bi options only, as well as the -tc and -ti options covered later in this
chapter.

For example, if you run the rpmbuild -bc command to stop after the %build section, you can use the
--short-circuit option to restart the build at the %build section. If you found a problem in the %build
section and corrected it, you can quickly get going again by restarting the build at the %build section
rather than extracting all the sources yet again.

This option is most useful when you are compiling a package, hit an error, and fix that error. Without
the --short-circuit option, you’ll likely end up spending a lot of time recompiling the code you have
already compiled.

During normal development of an RPM package, you will likely execute each build section, one at a
time, stop, fix any errors and restart where you left off. You’ll go through this cycle a number of times
before the RPM finally builds right.

Warning

Never distribute an RPM made with the --short-circuit option. Instead, once you have everything
working, start from scratch and rebuild the RPM. This is to avoid any problems with a partially-created
RPM.

Cleaning up

193

11.1.4. Cleaning up
The --clean option tells the rpmbuild command to remove the build tree when complete. This helps
ensure that the next time you run the rpmbuild command, you are starting from a known situation.

For example:

$ rpmbuild --clean /usr/src/redhat/SPECS/jikes.spec

Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.98247

+ umask 022

+ cd /usr/src/redhat/BUILD

+ rm -rf jikes-1.17

+ exit 0

You can use the --clean option alone, as shown previously, or in concert with another option such as -
bi to build and install a binary RPM. In the latter case, the rpmbuild command will clean the built files
after the rest of the command finishes.

Similarly, the --rmsource option tells the rpmbuild command to remove the sources after completing
the command. You can call this option with another option, such as -bi for building and installing a
binary RPM (and then removing the sources), or alone on the command line to remove the sources
only.

For example:

rpmbuild --rmsource jikes.spec

Note

The abbreviation rm is short for remove. It comes from the Linux rm command, used for removing
files.

The --rmspec option tells the rpmbuild command to remove the spec file when done with the
command. As with the --rmsource option, you can use the --rmspec option in conjunction with another
rpmbuild option or on its own to just remove the spec file.

For example:

rpmbuild --rmspec jikes.spec

Warning

The file you are removing with this command is the spec file you are passing to the command. Be
careful, because you cannot undo this operation and you have now lost your spec file, except inside
your source package.

11.1.5. Building for other platforms
The --target option tells the rpmbuild command to build a package for another platform. You need to
pass the name of the platform. For example:

rpmbuild -bi --target i486-redhat-linux

Chapter 11. Controlling the Build with rpmbuild

194

The basic format is:

cpu-vendor-os

For example, i686-redhat-linux specifies a 686 CPU with Red Hat Linux. Other CPUs include ppc for
PowerPC and sparc for Sun SPARC.

Cross Reference

The --target option sets the target architecture at build time. Chapter 3, Using RPM covers how you
can use the --ignoreos and --ignorearch options when installing RPMs to ignore the operating system
and architecture that is flagged within the RPM. Of course, this works only if you are installing on a
compatible architecture.

On the surface level, the --target option overrides some of the macros in the spec file, %_target,
%_target_arch, and %_target_os. This flags the RPM for the new target platform.

Under the covers, setting the architecture macros is not enough. You really cannot create a PowerPC
executable, for example, on an Intel-architecture machine, unless you have a PowerPC cross
compiler, a compiler that can make PowerPC executables.

Warning

Set the target with care. Make sure you can really build executable programs for that architecture.

If you try to compile a system that uses the GNU configure system to configure the build, your target
will likely be ignored. For example, if you try to build the aforementioned jikes package with a target
of ppc-ibm-aix, to specify IBM’s UNIX, called AIX, on a PowerPC architecture, you will see the target
ignored as the configure system detects that it's running on Linux on an i686 architecture.

For example:

$ rpmbuild -bc --target ppc-ibm-aix /usr/src/redhat/SPECS/jikes.spec

Building target platforms: ppc-ibm-aix

Building for target ppc-ibm-aix

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.94955

+ umask 022

+ cd /usr/src/redhat/BUILD

+ LANG=C

+ export LANG

+ cd /usr/src/redhat/BUILD

+ rm -rf jikes-1.17

+ /usr/bin/gzip -dc /usr/src/redhat/SOURCES/jikes-1.17.tar.gz

+ tar -xf -

+ STATUS=0

Building RPMs Without an External Spec File

195

+ '[' 0 -ne 0 ']'

+ cd jikes-1.17

++ /usr/bin/id -u

+ '[' 500 = 0 ']'

++ /usr/bin/id -u

+ '[' 500 = 0 ']'

+ /bin/chmod -Rf a+rX,g-w,o-w .

+ exit 0

Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.15710

+ umask 022

+ cd /usr/src/redhat/BUILD

+ cd jikes-1.17

+ LANG=C

+ export LANG

+ ./configure CXXFLAGS=-O3 --prefix=/tmp/jikesrpm/usr

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for gawk... gawk

checking whether make sets ${MAKE}... yes

checking whether to enable maintainer-specific portions of Makefiles... no

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

checking for g++... g++

As you can see, the command starts out with the target as the platform, but the configure script soon
overrides that, as shown at the end of the truncated output.

11.2. Building RPMs Without an External Spec File
Most of the options for the rpmbuild command require an RPM spec file. This file defines all the
necessary parameters for the RPM to build. If you’ve downloaded an application, though, you may not
have all the information needed to build a spec file. In addition, writing the spec file is the most time-
consuming task when building RPMs. If you are lucky, the provider of a given application may have
already created a spec file and included the spec file within the source distribution.

Chapter 11. Controlling the Build with rpmbuild

196

11.2.1. Options for working with tar archives
A special set of options aims toward building RPMs with spec files stored in tar archives, also called
tarballs. Tarballs are files combined with the tar (tape archiver) utility and then optionally compressed,
usually with the gzip command. Because this format is used so often for UNIX and Linux software, you
can use a set of -t options to the rpmbuild command that mimic the -b options.

The basic syntax follows:

rpmbuild -tBuildStage compressed_tar_archive

The -t option is a lot like the -b option covered in Chapter 8, Creating RPMs: An Overview , except -t
tells rpmbuild to build an RPM from a compressed tar archive instead of from an RPM spec file. You
still need a spec file. These commands just assume that the spec file is located within the tar archive.
The extra BuildStage option is a special code that tells the rpmbuild command how far to go when
building. Table 12-2 lists these options:

Table 12-2 Options for building with rpmbuild with tar archives

Option Usage

-ta Build all, both a binary and source RPM

-tb Build a binary RPM

-tc Stop after the %build section

-tp Stop after the %prep section

-ti Stop after the %install section

-tl Check the listing of files for the RPM

-ts Build a source RPM only

Note

These command-line options work with a tar archive or a compressed tar archive.

11.2.2. The expected archive structure
To build a package this way, the tar archive must have enough of an expected structure, such as a
configure script and a Makefile with the expected make targets. The most crucial element is that the
tar archive must have the package spec file.That’s because the rpmbuild command doesn’t know how
to build every program in the universe. Instead, rpmbuild expects to find a spec file to tell it what to do.
If you see an error like the following, then your tar archive likely is missing the spec file:

$ rpmbuild -tc vixie-cron*tar.gz

error: Name field must be present in package: (main package)

error: Version field must be present in package: (main package)

error: Release field must be present in package: (main package)

error: Summary field must be present in package: (main package)

error: Group field must be present in package: (main package)

error: License field must be present in package: (main package)

Working with Source RPMs

197

These errors show expected tags from the missing spec file.

11.3. Working with Source RPMs
Most of your work with the rpmbuild command will likely be to create binary RPMs after you have
the sources for an application and a spec file. You can also get a lot of mileage out of source RPMs,
whether you build them or download them.

Cross Reference

Chapter 9, Working with Spec Files covers the spec file in depth.

Because they are RPMs themselves, source RPMs act like other RPMs. For example, you can use
the rpm -i command to install a source RPM. This installs the sources provided by the source RPM,
not the actual application. Normally, when you install a source RPM on a Red Hat Linux system, the
package gets installed into /usr/src/redhat.

Note

This directory is obviously specific to Red Hat Linux. On other Linux distributions, you'll likely see
directories such as /usr/src/OpenLinux for SCO (formerly Caldera) OpenLinux.

Installing a source RPM is not exactly the same as installing a binary RPM. For example, the rpm
command does not update the RPM database when you install a source RPM. In addition, listing the
files in a source RPM only shows the relative paths, not the full paths.

Once installation is complete, you can use the rpmbuild command to create a binary RPM from the
sources in the source RPM, using the -b command-line options introduced in Chapter 8, Creating
RPMs: An Overview . The next sections show more shortcuts with source RPMs.

11.3.1. Rebuilding binary RPMS from source RPMs
As a shortcut, you do not have to install a source RPM to create a binary RPM. Instead, you can build
the binary RPM directory using the --rebuild option.

The --rebuild option tells the rpmbuild command to rebuild a binary RPM from a source RPM file. The
basic syntax is:

rpmbuild --rebuild package.src.rpm

This command builds a binary RPM out of a source RPM with a minimum of fuss. For example:

$ rpmbuild --rebuild unix2dos-2.2-17.src.rpm

Installing unix2dos-2.2-17.src.rpm

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.15828

+ umask 022

+ cd /usr/src/redhat/BUILD

+ LANG=C

+ export LANG

Chapter 11. Controlling the Build with rpmbuild

198

+ cd /usr/src/redhat/BUILD

+ rm -rf unix2dos-2.2

+ /bin/mkdir -p unix2dos-2.2

+ cd unix2dos-2.2

+ /usr/bin/gzip -dc /usr/src/redhat/S OURCES/unix2dos-2.2.src.tar.gz

+ tar -xf -

+ STATUS=0

+ '[' 0 -ne 0 ']'

++ /usr/bin/id -u

+ '[' 500 = 0 ']'

++ /usr/bin/id -u

+ '[' 500 = 0 ']'

+ /bin/chmod -Rf a+rX,g-w,o-w .

+ echo 'Patch #0 (unix2dos-mkstemp.patch):'

Patch #0 (unix2dos-mkstemp.patch):

+ patch -p1 -b --suffix .sec -s

+ echo 'Patch #1 (unix2dos-2.2-segfault.patch):'

Patch #1 (unix2dos-2.2-segfault.patch):

+ patch -p1 -b --suffix .segf -s

+ echo 'Patch #2 (unix2dos-2.2-manpage.patch):'

Patch #2 (unix2dos-2.2-manpage.patch):

+ patch -p1 -b --suffix .man -s

+ perl -pi -e 's,^#endif.*,#endif,g;s,^#else.*,#else,g' unix2dos.c unix2dos.h

+ exit 0

Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.60650

+ umask 022

+ cd /usr/src/redhat/BUILD

+ cd unix2dos-2.2

+ LANG=C

+ export LANG

Rebuilding binary RPMS from source RPMs

199

+ gcc -O2 -march=i386 -mcpu=i686 -ounix2dos unix2dos.c

+ exit 0

Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.35128

+ umask 022

+ cd /usr/src/redhat/BUILD

+ cd unix2dos-2.2

+ LANG=C

+ export LANG

+ rm -rf /var/tmp/unix2dos-root

+ mkdir -p /var/tmp/unix2dos-root/usr/bin /var/tmp/unix2dos-

root/usr/share/man/man1

+ install -m755 unix2dos /var/tmp/unix2dos-root/usr/bin

+ install -m444 unix2dos.1 /var/tmp/unix2dos-root/usr/share/man/man1

+ /usr/lib/rpm/redhat/brp-compress

+ /usr/lib/rpm/redhat/brp-strip

+ /usr/lib/rpm/redhat/brp-strip-comment-note

Processing files: unix2dos-2.2-17

Executing(%doc): /bin/sh -e /var/tmp/rpm-tmp.12033

+ umask 022

+ cd /usr/src/redhat/BUILD

+ cd unix2dos-2.2

+ DOCDIR=/var/tmp/unix2dos-root/usr/share/doc/unix2dos-2.2

+ export DOCDIR

+ rm -rf /var/tmp/unix2dos-root/usr/share/doc/unix2dos-2.2

+ /bin/mkdir -p /var/tmp/unix2dos-root/usr/share/doc/unix2dos-2.2

+ cp -pr COPYRIGHT /var/tmp/unix2dos-root/usr/share/doc/unix2dos-2.2

+ exit 0

Finding Provides: /usr/lib/rpm/find-provides

Finding Requires: /usr/lib/rpm/find-requires

PreReq: rpmlib(PayloadFilesHavePrefix) <= 4.0-1 rpmlib(CompressedFileNames)

Chapter 11. Controlling the Build with rpmbuild

200

<= 3.0.4-1

Requires(rpmlib): rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(CompressedFileNames) <= 3.0.4-1

Requires: libc.so.6 libc.so.6(GLIBC_2.0) libc.so.6(GLIBC_2.1)

Checking for unpackaged file(s): /usr/lib/rpm/check-files /var/tmp/unix2dos-root

Wrote: /usr/src/redhat/RPMS/i386/unix2dos-2.2-17.i386.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.47653

+ umask 022

+ cd /usr/src/redhat/BUILD

+ cd unix2dos-2.2

+ rm -rf /var/tmp/unix2dos-root

+ exit 0

Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.47653

+ umask 022

+ cd /usr/src/redhat/BUILD

+ rm -rf unix2dos-2.2

+ exit 0

With the --rebuild option, the rpmbuild command installs the source RPM for you and then performs
the preparation, compile, and installation stages of building a binary RPM. Unless there are errors, you
should have a new binary RPM file.

When complete, the rpmbuild --rebuild command cleans out the built files in the build directory, as if
the --clean option were used. The rpmbuild --rebuild command also removes the installed sources and
spec file upon completion.

11.3.2. Recompiling binaries from source RPMs
If you just want to recompile the files in a source RPM, you can use the --recompile option. The --
recompile option tells the rpmbuild command to recompile the binary application from a source RPM.

For example:

rpmbuild --recompile package.src.rpm

This is the same as installing the source RPM and then running rpmbuild -bc --clean with the package
spec file.

Note

There is no difference between --recompile and --rebuild in RPM 4.1. RPM 4.2 fixes this problem.

SRPMS? Finding source RPMs

201

11.3.3. SRPMS? Finding source RPMs
Often, source RPMs are abbreviated as SRPMs. In fact, if you see a directory named SRPM or
SRPMS, chances are the directory holds source RPMs. (Red Hat uses this convention for its Linux
distributions.)

The SRPMS directories on Red Hat CD-ROMs or on the Red Hat FTP Internet site, ftp.redhat.com,
indicate directories that hold source RPMs.

11.4. Signing Built RPMs
Signing RPMs adds an extra level of trustworthiness to your RPMs. A digital signature helps
establish that the package comes from you, really you, and not from someone masquerading as you.
Unfortunately, the RPM system requires a bit of set up work before you can sign RPMs.

11.4.1. Checking that the GPG software is installed
To sign packages, you need to ensure that you have the gpg command installed and configured. To
check that this command is installed, use a command like the following:

$ rpm -qf `which gpg`

gnupg-1.0.7-6

This shows that the command is available.

GPG and PGP? Acronyms Explained

The RPM documentation uses GPG and PGP pretty much interchangeably, so much so, in fact, that
you may think these are typographical errors. Not so.

PGP stands for Pretty Good Privacy. Invented by Phil Zimmerman, PGP was originally invented to
encrypt e-mail to allow for private communication. Based on a public-key cryptography algorithm, PGP
also supports encrypted digital signatures. These signatures allow you to verify that a package you
have downloaded really comes from the vendor you think it does. You do this by using the vendor’s
public key.

GPG stands for GNU Privacy Guard, a free, open-source implementation of PGP from the GNU
project. GPG aims to be compatible with the OpenPGP Internet standard as defined in RFC 2440. It
started when a number of developers wanted a free implementation. One such free implementation,
GPG, allows Linux vendors such as Red Hat to include PGP in their products. So, in a sense, GPG
provides PGP.

PGP has a long and somewhat troubled history as an open-source product and as a commercial
product. See www.philzimmermann.com for background on PGP and its long history. See
www.gnupg.org for more details on GPG.

11.4.2. Configuring a signature
To configure a signature, you first need to create a new key with the gpg command, using the --gen-
key option, as shown following:

$ gpg --gen-key

Chapter 11. Controlling the Build with rpmbuild

202

gpg (GnuPG) 1.0.7; Copyright (C) 2002 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

gpg: Warning: using insecure memory!

gpg: please see http://www.gnupg.org/faq.html for more information

gpg: keyring `/home2/ericfj/.gnupg/secring.gpg' created

gpg: keyring `/home2/ericfj/.gnupg/pubring.gpg' created

Please select what kind of key you want:

(1) DSA and ElGamal (default)

(2) DSA (sign only)

(4) ElGamal (sign and encrypt)

(5) RSA (sign only)

Your selection? 1

DSA keypair will have 1024 bits.

About to generate a new ELG-E keypair.

minimum keysize is 768 bits

default keysize is 1024 bits

highest suggested keysize is 2048 bits

What keysize do you want? (1024)

Requested keysize is 1024 bits

Please specify how long the key should be valid.

0 = key does not expire

<n> = key expires in n days

<n>w = key expires in n weeks

<n>m = key expires in n months

<n>y = key expires in n years

Key is valid for? (0)

Configuring a signature

203

You need a User-ID to identify your key; the software constructs the user id

from Real Name, Comment and Email Address in this form:

"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Eric Foster-Johnson

Email address: please_no_spam@nospam.com

Comment: Example for Red Hat RPM Guide

You selected this USER-ID:

"Eric Foster-Johnson (Example for Red Hat RPM Guide) <erc@no_spam.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

O

You need a Passphrase to protect your secret key.

Enter passphrase:

We need to generate a lot of random bytes. It is a good idea to perform

some other action (type on the keyboard, move the mouse, utilize the

disks) during the prime generation; this gives the random number

generator a better chance to gain enough entropy.

+++
+++

+++++++++++++++++++++++++++++++++++..+++++..++++++++++>++++++++++........+++++

gpg: /home2/ericfj/.gnupg/trustdb.gpg: trustdb created

public and secret key created and signed.

key marked as ultimately trusted.

pub 1024D/01681C24 2002-11-05 Eric Foster-Johnson (Example for Red Hat RPM

Guide) <please_no_spam@nospam.com>

Key fingerprint = 8C14 A2E9 47D1 301B 2153 7CDF BEE5 9C10 0268 1D24

sub 1024g/1A15D6C8 2002-11-05

You can choose the default options for most choices. You need to enter a real name, an e-mail
address, and a pass phrase. Remember the pass phrase. You will need to enter the pass phrase
every time you wish to sign a package.

Chapter 11. Controlling the Build with rpmbuild

204

Once you have a key, the next step is to set up some RPM macros. There are a number of places you
can do this, but using the .rpmmacros file in your home directory is one of the easiest. Edit this file as
shown in the following example:

%_signature gpg

%_gpg_path /home2/ericfj/.gnupg

%_gpg_name EricFJ (Eric Key) <erc@no_spam.com>

%_gpgbin /usr/bin/gpg

Add lines like these to the $HOME/.rpmmacros file. (Create this file if it does not exist.)

Cross Reference

Chapter 20, Customizing RPM Behavior covers RPM macros and the $HOME/.rpmmacros file.

Inside the file, change the %gpg_path macro to the .gnupg directory under your home directory (or the
root user’s home directory). Change the %_gpg_name macro to the name you have entered into the
gpg program.

11.4.3. Signing with the rpmbuild command
The --sign option tells the rpmbuild command to sign the created package. You need to have
configured the RPM system for your signature as shown in the previous sections.

When you then build an RPM, you will be prompted for your pass phrase prior to the package build.
For example, the following shows this prompt (and truncates the rest of the rpmbuild messages that
follow):

$ rpmbuild -bb --sign xtoolwait-1.2.spec

Enter pass phrase:

Pass phrase is good.

11.4.4. Signing with the rpm command
In addition to the --sign option for the rpmbuild command, you can sign packages that have already
been created using the rpm command. The --addsign and --resign options generate new signatures
and insert them into the passed-in package file. The basic syntax is:

rpm --addsign package.rpm

rpm --resign package.rpm

The --addsign option adds another signature to the RPM. RPM versions prior to 4.1 allowed you to
sign a package with multiple keys, which causes problems for automatic verification. Because of that,
use the --resign option, which removes the old signature and inserts a new signature into the package.

11.4.5. Verifying signatures
You can verify the RPM signature to ensure that the package has not been modified since it has
been signed. Verification also checks that the package is signed by the key that matches the claimed
vendor.

Verifying signatures

205

To verify the signature in an RPM, use the -K option to the rpm command. The basic syntax is:

rpm -K package.rpm

Note

This is the rpm command, not the rpmbuild command.

This command accepts the options shown in Table 12-3 to turn off checking for certain types of
signatures.

Table 12-3 Options to turn off signature checking

Option Usage

--nogpg Don’t check for GPG signatures

--nomd5 Don’t check for MD5 signatures

--nopgp Don’t check for PGP signatures

You can also use the --checksig option, which is the same as -K. When you run this command on a
package that has a verifiable key, you will see output like the following:

rpm -K xtoolwait-1.3-3.src.rpm

xtoolwait-1.3-3.src.rpm: (sha1) dsa sha1 md5 gpg OK

This verifies that the package has not been changed from when it was first signed. It also verifies that
the signature matches the public key from the vendor of the package. This goes a long ways toward
verifying that the package is indeed legitimate.

To get more information, add a -v (verbose) option. For example:

$ rpm -Kv vixie-cron-3.0.1-69.src.rpm

vixie-cron-3.0.1-69.src.rpm:

Header V3 DSA signature: OK, key ID db42a60e

Header SHA1 digest: OK (ecbb244ab022ecd23114bb1d6c9bdeb74f8d9520)

MD5 digest: OK (fb0a75eca1d526d391c36dc956c23bdd)

V3 DSA signature: OK, key ID db42a60e

If you run this command on a package that does not verify, you’ll see an error like the following:

rpm --checksig xtoolwait-1.3-3.src.rpm

xtoolwait-1.3-3.src.rpm: (SHA1) DSA sha1 md5 (GPG) NOT OK (MISSING KEYS: GPG#db42a60e)

Items that fail are listed in uppercase, such as DSA, while items that succeed appear in lowercase.
In this example, the sha1 and md5 tests succeeded, while the DSA test failed. This failure does not
necessarily mean that the package is not legitimate. This failure can mean one of three things:

1.The package was not properly signed in the first place. That is, it is a legitimate package but the
package author did not properly sign the RPM.

Chapter 11. Controlling the Build with rpmbuild

206

2.The package has been modified in some way. That is, the package is not legitimate.

3.The RPM system has not been initialized with the public key from the package vendor.

From this error, you don’t yet know whether the package is legitimate or not. The first step, though, is
to check that you have imported the proper public key from the package vendor.

11.4.6. Importing public keys
The --import option to the rpm command imports the public key from a given vendor. The format for
this key follows:

The following public key can be used to verify RPM packages built and

signed by &FORMAL-RHI; using `rpm -K' using the GNU GPG package.

Questions about this key should be sent to security@redhat.com.

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: GnuPG v1.0.0 (GNU/Linux)

Comment: For info see http://www.gnupg.org

mQGiBDfqVEqRBADBKr3Bl6PO8BQ0H8sJoD6p9U7Yyl7pjtZqioviPwXP+DCWd4u8

HQzcxAZ57m8ssA1LK1Fx93coJhDzM130+p5BG9mYSPShLabR3N1KXdXAYYcowTOM

GxdwYRGr1Spw8QydLhjVfU1VSl4xt6bupPbFJbyjkg5Z3P7BlUOUJmrx3wCgobNV

EDGaWYJcch5z5B1of/41G8kEAKii6q7Gu/vhXXnLS6m15oNnPVybyngiw/23dKjS

ti/PYrrL2J11P2ed0x7zm8v3gLrY0cue1iSba+8glY+p31ZPOr5ogaJw7ZARgoS8

BwjyRymXQp+8Dete0TELKOL2/itDOPGHW07SsVWOR6cmX4VlRRcWB5KejaNvdrE5

4XFtOd04NMgWI63uqZc4zkRa+kwEZtmbz3tHSdWCCE+Y7YVP6IUf/w6YPQFQriWY

FiA6fD10eB+BlIUqIw80EqjsBKmCwvKkn4jg8kibUgj4/TzQSx77uYokw1EqQ2wk

OZoaEtcubsNMquuLCMWijYhGBBgRAgAGBQI36lRyAAoJECGRgM3bQqYOhyYAnj7h

VDY/FJAGqmtZpwVp9IlitW5tAJ4xQApr/jNFZCTksnI+4O1765F7tA==

=3AHZ

-----END PGP PUBLIC KEY BLOCK-----

Note

For reasons of space, this is not a complete key.

You need to pass the name of the text file that holds the key to the rpm --import command, as shown
following:

rpm --import key_file

Getting the Red Hat public key

207

Note

You must be logged in as the root user to import keys.

For example:

rpm --checksig xtoolwait-1.3-3.src.rpm

xtoolwait-1.3-3.src.rpm: (SHA1) DSA sha1 md5 (GPG) NOT OK (MISSING KEYS: GPG#db42a60e)

rpm --import RPM-GPG-KEY

rpm --checksig xtoolwait-1.3-3.src.rpm

xtoolwait-1.3-3.src.rpm: (sha1) dsa sha1 md5 gpg OK

This example shows an error message when trying to verify the key. Then, after importing the Red Hat
public key, the verification works.

If, after importing this key, you still have problems, you can assume there are problems with the
package. Many administrators will refuse to install such packages.

Warning

You should be careful with packages that have signatures that do not verify.

To list the available keys, use a command like the following:

$ rpm -qa | grep -i gpg

gpg-pubkey-db42a60e-37ea5438

This example shows one key installed.

Note

You can erase this key as if it were a package, using the rpm -e command.

11.4.7. Getting the Red Hat public key
Strangely enough, the Red Hat public key is not installed when you install Red Hat Linux 8.0. If you
need the key, the Red Hat public key is available on the root directory of all Red Hat Linux CD-ROMs,
as shown in the following listing:

$ ls /mnt/cdrom/

EULA GPL README RedHat/ RPM-GPG-KEY SRPMS/ TRANS.TBL

Simply copy the RPM-GPG-KEY file to get the public key. Then use the rpm --import command with
this key file.

Note

You can also download this key file from the Red Hat FTP site, at ftp://ftp.redhat.com/pub/redhat/
linux/8.0/en/os/i386/.

Chapter 11. Controlling the Build with rpmbuild

208

11.5. Summary
This chapter covers options for the rpmbuild command that allow you to achieve a finer grain of control
over how the command works. For example, the --short-circuit option tells the rpmbuild command to
build just the stages you ask for. This helps when you have problems in one area of building an RPM
and don’t want to start over each time you try to see if the problem is solved.

The rpmbuild command also supports a set of -t options that work like the -b options, except the -t
options try to build an RPM from a tar archive of sources (a tarball) instead of an RPM spec file. In this
case, the rpmbuild command tries to work without a spec file.

The --rebuild option tells the rpmbuild command to install a source RPM, build the binary RPM, and
clean out the installed source RPM. This provides quite a shortcut for installing binary RPMs from
source RPMs.

RPMs should be signed to provide an extra level of authentication. This system isn’t perfect, but it
helps you verify that a package is from the person it says it is from and that the package has not been
modified. You can check the signature on RPM packages you download. You can also, with some
configuration, sign the packages you create.

Chapter 12.

209

Supplemental Packaging Software
This chapter covers:

• Understanding packaging aids

• Manipulating packages

RPM is intended to make system management easier, both for system administrators and other
users who do all the day-to-day work of installing and removing applications and for developers and
other users who do all the work of preparing applications for installation. For RPM packagers, the
work involved in preparing an application for installation has two phases: first, the software must be
compiled (if it is not written in an interpreted language such as Perl) and otherwise configured for
the system on which it will be installed; then the RPM package of the software must be prepared
by creating a spec file that properly packages it into an RPM. In contrast, packagers who choose to
package applications in a simpler format, such as gzipped tarballs (compressed tar archives), have
less work ahead of them, since they need only concern themselves with the first step.

After a packager has prepared an RPM package once, RPM makes the first step (compilation and
configuration) easier when the packager has to package an updated version of the same software;
RPM does a lot of work to track compilation commands, any needed patches, and any configuration
modifications discovered to be necessary to prepare the software. Similarly, once an RPM spec
file has been produced for an application, updating that spec file to support a newer version of that
application is usually trivial. For these reasons, using RPM instead of a simpler, less end-user-friendly
package format (such as gzipped tarballs) is a bit of a tradeoff for the packager; preparing an RPM of
an application requires a little more initial time and work than preparing a gzipped tarball of that same
application, but once created, the RPM package takes less time and effort to keep current than the
gzipped tarball requires.

12.1. Packaging Aids
However, several helper tools are also available for RPM packagers. These tools can be used at
various stages in the process of producing a high-quality RPM package to simplify the tasks that an
RPM packager must perform. These tools include syntax-highlighting modes for various text editors,
making production and maintenance of spec files easier; macro packages for popular text editors,
simplifying the generation and maintenance of spec files; tools that generate spec files, simplifying
initial spec file creation; and debuggers that validate produced binary RPMs, helping ensure that the
spec file used to create the packages is accurate and high quality.

12.1.1. Using VIM spec plugins to improve spec file editing
Unix systems have traditionally shipped the legendary (or notorious, depending upon your point of
view) vi editor (pronounced vee eye) as their default text editor. Vi was initially developed by Bill Joy
in 1976 for BSD Unix. It eventually was incorporated in AT& T System V Unix as well and later was
mandated by the POSIX 1003 standards (which define what an OS must have to be Unix-compatible),
thereby conquering all facets of the Unix world.

The original vi source code is no longer freely available, but several clones of the vi program have
been created over the years. The most popular of these vi clones is probably Vi IMproved, or VIM
(www.vim.org). VIM is the standard vi implementation (meaning that when you type vi at the command
prompt, the program you really are running is vim) on many Linux distributions, including Red

Chapter 12. Supplemental Packaging Software

210

Hat Linux. It is also freely available for most other Unixes and even for non-Unix systems such as
Microsoft Windows.

VIM is a fully backwards-compatible implementation of the original vi editor, although it also offers
many additional features that vi did not support. One VIM feature that can be extremely useful when
preparing spec files is colorized syntax highlighting. VIM has an extensible interface through which it
can be told about the syntax used for files of various types. Once it understands a filetype's syntax,
it can color the various syntactic structures of that file in different ways. For example, when editing a
Bourne shell script using VIM, comments are typically blue, control statements (if, for, do, and so on)
are yellow, variables are purple, and so forth. Many people find this feature very useful, since a single
glance reveals the entire logical structure of the file. Furthermore, errors in the file (such as a missing
done statement failing to close a do loop in a Bourne shell script) are often immediately obvious when
using such a colorizing editor.

Usually, VIM does not understand the structure of RPM spec files. When preparing a spec file, VIM
displays all text in the same color. A spec.vim syntax file is available for VIM that makes VIM aware
of the syntax used for RPM spec files. When this file is used, the various structural components
(%define, preamble statements, %build, and so forth) are all colorized, making the logic of the spec file
readily apparent.

The spec.vim file that provides VIM with an understanding of spec-file syntax is bundled with newer
versions of VIM, or it can be downloaded from the Internet. Most RPM-based Linux distributions,
including Red Hat Linux, ship this file with VIM as part of their distribution and even automatically
configure VIM to load this syntax file any time an RPM spec file is being edited. When using VIM
on a system that does not automatically load spec.vim whenever spec files are edited, you should
download the spec.vim file (I tend to save such personal extensions in ~/etc/vim, but you can save it
any place you prefer).

Cross Reference

Download the spec.vim syntax file for VIM from http://pegasus.rutgers.edu/~elflord/vim/syntax/
spec.vim.

Once downloaded, configure VIM to load your new syntax file. You can do this by putting the following
in your ~/.vimrc file (assuming you have saved the file as ~/etc/vim/spec.vim; adjust the path as
necessary if you saved it elsewhere):

augroup syntax

au! BufNewFile,BufReadPost *.spec so ~/etc/vim/spec.vim

au BufNewFile,BufReadPost *.spec so ~/etc/vim/spec.vim

augroup END

This statement will instruct VIM to load the syntax file whenever a file named with a .spec extension
is edited. You can now even customize the colors which VIM uses, if you like, by editing ~/etc/vim/
spec.vim!

The VIM editor has hundreds of built-in commands for formatting text. If necessary, it can even be
extended with new commands. Furthermore, these commands can be defined in FileType plugins,
so that different commands are loaded depending upon the type of file being edited (just as different
syntax matching can be used depending upon the type of file being edited). Gustavo Niemeyer has
written a spec plugin, pi_spec, which defines various commands that can be used when working

Using VIM spec plugins to improve spec file editing

211

with RPM spec files. Currently, this plugin can be used to automate maintenance of the %changelog
section of RPM spec files.

By default, the spec plugin provides a macro, spec_chglog, which is mapped to the <LocalLeader>-
c key. Normally, the LocalLeader key in VIM is mapped to "\", a backslash character. This means you
press \c to load the spec_chglog macro. If desired, you can instead map spec_chglog to a different
key by putting a statement like the following in your ~/.vimrc file.

au FileType spec map <buffer> C <Plug>SpecChangelog

In this case, that statement would map the macro to the "C" key, but you can map it to a different key
by replacing the "C" in the statement with whichever key or key combination you prefer.

The spec_chglog macro checks the %changelog in the spec file currently being edited and makes
sure that the last entry in this %changelog was written today and was written by you. If it was, the
macro adds a new item to the entry. If it was not written today, or was written today, but not by you,
the macro adds an entirely new entry. Optionally, the macro also checks that the name, version,
and release of the package are correct and will update the release if it is incorrect. In addition, the
macro maps the percent key, %, making it usable in command mode in VIM to move quickly between
sections within a spec file.

To help spec_chglog, you can define a few variables in your ~/.vimrc file to customize its behavior. The
variable spec_chglog_format defines what the macro uses for new %changelog entries. If you do not
define this variable, the macro will ask you for an e-mail address and construct it for you the first time
you use the macro. Alternatively, you can customize it yourself by adding an entry like the following to
your ~/.vimrc file.

let spec_chglog_format = "%a %b %d %Y Your Name <your@email.address>"

The preceding format is what Red Hat's developers use for Red Hat Linux spec files and results in
a %changelog entry that looks like the following, with the user name and e-mail address changed to
protect the innocent:

* Mon Apr 15 2002 Bob Marley <bob@marley.yow>

The variables in the spec_chglog_format control the time format that is used. If you want different
time formats in your %changelog entry, you can replace the variables (using %A instead of %a would
cause the full weekday name, such as "Monday", to be printed) using the documentation in the
strftime(3) man page as a guideline.

By default, the macro will insert new entry items after existing items. For example, if I already have a
%changelog entry for today that reads as follows:

* Mon May 6 2002 Bob Marley <bob@marley.yow>

- Updated to newest release

Then, using the macro to add a new entry for an additional patch I added will, by default, result in an
entry that reads:

* Mon May 6 2002 Bob Marley <bob@marley.yow>

- Updated to newest release

- Added Solaris compile patch

Chapter 12. Supplemental Packaging Software

212

If I want, I can instead have new items inserted before existing items, so that my second entry instead
looks like

* Mon May 6 2002 Bob Marley <bob@marley.yow>

- Added Solaris compile patch

- Updated to newest release

To have new items inserted before existing items, simply add the following line to your ~/.vimrc file:

let spec_chglog_prepend = 1

Optionally, the macro can track version and release numbers in the %changelog entries automatically.
Adding the line

let spec_chglog_release_info = 1

results in the first item in every changelog entry automatically reflecting the version and release, so
that my %changelog entry might instead look like the following:

* Mon May 6 2002 Bob Marley <bob@marley.yow>

+ httpd-2.0.36-2

- Updated to newest release

- Added Solaris compile patch

If this feature is enabled, the macro automatically checks the version and release information to make
sure that they have increased. If they haven't, it will offer to update them for you. Add the following line
to your ~/.vimrc file to disable this feature, if necessary.

let spec_chglog_never_increase_release = 1

This spec plugin ships with newer versions of VIM. Both it and the VIM spec syntax highlighting
extensions can be very useful for speeding spec file editing and debugging, and are well worth trying
out if you are a VIM user.

Cross Reference

You can find out more about vim at www.vim.org.

12.1.2. Adding functions with emacs rpm-spec-mode
Of course, not everyone in the world uses VIM. Another commonly used editor is the emacs editor
originally developed by Richard M. Stallman. Unlike vi, emacs is not considered an essential Unix
component and is not always found installed on a Unix system, although it is bundled with just about
every Linux distribution.

Over the years, two major emacs variants have emerged. GNU Emacs is produced by the Free
Software Foundation and can be downloaded from www.gnu.org/software/emacs/emacs.html.
XEmacs is based on GNU Emacs and is available from www.xemacs.org. Historically, the two differed
in their user interfaces (XEmacs, as the name suggests, had an X Window interface, though GNU
Emacs has one as well these days) and in some technical details of how they operated. Both are
freely available under the terms of the GNU GPL, so you can download and try either or both if they
are not already on your system.

Adding functions with emacs rpm-spec-mode

213

Cross Reference

See Chapter 27, Licensing RPM for more on the GNU GPL, or General Public License.

Red Hat Linux includes RPMs of both GNU Emacs and XEmacs as part of the distribution, and most
other Linux distributions will include one or both as well.

Like VIM, both GNU Emacs and XEmacs support syntax highlighting. They are also both extensible,
having the ability to load mode files that add new commands and functions. Stig Bjørlykke has written
a mode, rpm-spec-mode.el, which works with both GNU Emacs and with XEmacs to add many
functions, making it easier to use when editing RPM spec files. Red Hat Linux includes and enables
this mode in both GNU Emacs and XEmacs, as do many other Linux distributions.

Cross Reference

You can download this emacs mode from http://tihlde.org/~stigb/rpm-spec-mode.el.

After downloading, you will need to put the following lines in your ~/.emacs init files (for GNU Emacs)
or ~/.xemacs init files (for XEmacs) to instruct emacs to load rpm-spec-mode whenever a file with
a .spec extension is being edited:

(autoload 'rpm-spec-mode "rpm-spec-mode.el" "RPM spec mode." t)

(setq auto-mode-alist (append '(("\\.spec" . rpm-spec-mode)) auto-mode-alist))

Once installed, rpm-spec-mode will provide emacs with additional support for editing RPM spec files.
Figure 13-1 shows this mode in GNU Emacs.

54965-0 Fg1301.tiff here; needs to be cropped to just the central window

Figure 13-1: Gnu Emacs using rpm-spec-mode

Figure 13-2 shows this mode in XEmacs.

54965-0 Fg1302.tiff here; needs to be cropped to just the central window

Figure 13-2: XEmacs using rpm-spec-mode

With this mode, emacs can do syntax highlighting of spec files, just like VIM. The mode file rpm-spec-
mode.el contains the emacs instructions that specify what should be highlighted and what colors
should be used for highlighting.

Tip

If you do not see syntax highlighting when you edit a spec file, your emacs session may or may not
be currently configured to do syntax highlighting. First, make sure that the status bar at the bottom
of your emacs window says (RPM-SPEC), indicating that rpm-spec-mode is being used. If it doesn't,
double-check the rpm-spec-mode installation instructions. If the status bar does indicate that you
are using rpm-spec-mode, also double-check that syntax highlighting (which, in emacs, is a global
configuration option) has been enabled. In both GNU Emacs and XEmacs, the Options menu has
a Syntax Highlighting option that must be enabled before emacs will colorize spec file syntactic
structures.

In addition to providing syntax colorization, rpm-spec-mode adds a variety of new functions to emacs
that can be used to speed the process of creating or editing RPM spec files. These new functions

Chapter 12. Supplemental Packaging Software

214

appear on the RPM-Spec menu that is added to emacs by rpm-spec-mode. Many of the functions are
similar to the functions added to VIM by the spec_chglog macro. Navigation functions to move quickly
through a spec file are provided, so that Ctrl+C, Ctrl+N (press Ctrl+C followed by Ctrl+N) will move
the cursor to the next major section of the spec file, while Ctrl+C, Ctrl+P will move the cursor to the
prior major section of the spec file. Similarly, macros are also defined to increment the release tag (Ctrl
+C, R) and the very handy option to add new %changelog entries (Ctrl+C, E). Like the VIM macros for
adding %changelog entries, the rpm-spec-mode command checks to see if an entry already exists for
today. If not, it adds a new entry, but if so, it just adds a new item to the existing entry. For %changelog
entries to have the correct e-mail address, the emacs variable user-mail-address must be set correctly.
If it is not set on your system, you can add the following line to your emacs initialization files:

(setq user-mail-address "your@email.address")

In addition to these basic functions, rpm-spec-mode offers more advanced spec file creation support.
Opening a new buffer in emacs for a spec file that does not already exist automatically generates a
skeleton spec file.

To further speed things up, emacs offers a number of macros for the main tasks in writing an RPM
spec file. Table 13-1 lists these macros.

Table 13-1Macro commands for The RPM SPEC MODE IN EMacs

Command Function

Ctrl+C Tab Adds a new tag to the spec file

Ctrl+C Ctrl+F F Adds a new file to the %files section

Ctrl+C Ctrl+F C Adds a new configuration file to the %files
section

Ctrl+C Ctrl+F D Adds a new documentation file to the %files
section

Ctrl+C Ctrl+F G Adds a new ghost file to the %files section

Ctrl+C Ctrl+D D Adds a new directory to the %files section

Ctrl+C Ctrl+D O Adds a new documentation directory to the
%files section

Ctrl+C Ctrl+C U Changes the umask in %defattr entries in %files

Ctrl+C Ctrl+C O Changes the owner in %defattr entries in %files

Ctrl+C Ctrl+C G Changes the group in %defattr entries in %files

Furthermore, rpm-spec-mode even adds macros to emacs that can be used to build RPMs from spec
files without even having to exit emacs! Since the process of constructing spec files is often iterative
(make new spec, build RPM from spec, find mistake, edit spec, build RPM from spec, find mistake,
and so on), this capability of emacs to be used as an IDE for RPM package generation is extremely
useful. Basic macros exist to do complete builds (Ctrl+C B to build a binary package, Ctrl+C S to
build a source package, and Ctrl+C A to build both). Macros can also be used to execute various
intermediate steps, such as the %prep stage (Ctrl+C P), the %build stage (Ctrl+C C), or the %install
stage (Ctrl+C I). Various options of the build process can also be controlled, such as GPG-signing of
generated packages.

If you are a user of GNU Emacs or XEmacs, you should definitely take the time to learn to use rpm-
spec-mode. Being able to build packages from within the editor where you are editing the spec file that
builds those packages is a great productivity gain for many people.

Validating and debugging spec files with rpmlint

215

12.1.3. Validating and debugging spec files with rpmlint
Both VIM and emacs extensions help with the process of initially creating spec files and with the
maintenance of existing RPM spec files. After a spec file has been created, and RPMs have been
created using that spec, the binary RPMs generated from the spec can be validated using the rpmlint
command. The name rpmlint comes from lint, the traditional Unix utility that can "sanity-check" C
source code, looking for certain classes of common C coding mistakes. The idea behind rpmlint is
similar; it processes binary RPMs, checking for certain common mistakes made by RPM packagers.

The rpmlint command currently ships with a wide variety of checks and is written using a modular
interface so that additional checks can easily be added if needed. Currently, rpmlint can check that
all binary files in the package are correct (making sure that a .noarch.rpm package does not contain
binary files, that no binaries are being installed in /etc, that the binary file types in the package are
appropriate for the package architecture, that shared libraries are configured correctly, and that all
executables are stripped). It can also check the validity of files marked as configuration files in the
RPM (ensuring that configuration files are only being installed in /etc, not in /usr) and that the package
file complies with the distribution's policies for packages (checking things such as the compression
of man pages and Info pages and the correctness of vendor and distribution fields in the package
header).

In addition, rpmlint performs a variety of checks to ensure that the package complies with the
Filesystem Hierarchy Standard (verifying that files are installed in their standard locations on the
system), the Linux Standards Base (verifying that package-file naming is LSB-compliant) and that files
have correct ownerships and permissions. Init scripts are double-checked (for packages that have init
scripts) to ensure that the basic structure of the init script is correct and that appropriate %post and
%preun configuration directives are being run to configure the init script on the system. %post, %pre,
and %preun scripts are also double-checked (ensuring that only valid interpreters are specified for
scripts and that scripts are written in valid syntax). The validity of the package itself is also checked in
various ways (ensuring that the package is GPG-signed, that the package's source RPM is correctly
prepared, that the package spec file uses correct syntax, and that all tags used in the package header
are valid).

Cross Reference

To find out more about the Filesystem Hierarchy Standard, see www.pathname.com/fhs/. To find out
more about the Linux Standards Base, see www.linuxbase.org.

Download rpmlint from www.lepied.com/rpmlint. It is written entirely in Python, so a Python interpreter
is necessary to run it.

Once installed, rpmlint can be configured on a system-wide basis, using the /etc/rpmlint/config file, or
on a per-user basis, using the $HOME/.rpmlintrc file. This file can specify checks to perform, check
output that should be ignored, and configuration options. Configuration options can be specified,
listing what entries are valid for various fields in the RPM header, such as the Vendor and Packager
fields. By default, Red Hat Linux ships with this configuration file set to validate packages to make sure
they are suitable for Red Hat Linux; if packaging for a different distribution, this file might need to be
modified.

Once rpmlint has been installed and configured, it can be run against RPMs. For example, rpmlint
helps with creating packages, such as tin (a popular Usenet client) for Red Hat Linux, since it is not
included with the distribution. After preparing a tin spec file, then building RPMs from that file, you can
typically double-check them using rpmlint.

For example, when running rpmlint on a source RPM, you’ll see output like the following:

Chapter 12. Supplemental Packaging Software

216

$ rpmlint tin-1.5.12-1.src.rpm

E: tin no-packager-tag

W: tin invalid-license distributable

W: tin no-url-tag

W: tin strange-permission tin-1.5.12.tar.bz2 0664

W: tin obsolete-tag Copyright

$

For the most part, this package looks fine according to the rpmlint output. The permissions on the tin
source code can be changed (0644 is the "preferred" permissions), and you might want to change my
spec file to use the License tag instead of the now-obsolete Copyright tag. Similarly, you might want to
add a URL tag to the package to point to the URL for the software.

When running rpmlint on a binary RPM, you’ll see output like the following:

$ rpmlint tin-1.5.12-1.i386.rpm

W: tin invalid-vendor None

W: tin invalid-distribution None

E: tin no-packager-tag

W: tin invalid-license distributable

W: tin no-url-tag

$

With this output, the binary package looks fine. You should set a I don’t bother setting a vendor,
distribution, and packager but you can ignore those warnings. Similarly, rpmlint warns because it does
not recognize the license type used, "distributable". You can fix this, you can ignore this, or you can
modify /etc/rpmlint/config so that rpmlint recognizes "distributable" as a valid license.

The sorts of validity checks that rpmlint can do make it valuable for ensuring the quality and
consistency of RPMs. Most RPM-based Linux distributions validate their entire distribution using
rpmlint. Using it for packages you prepare is a good idea as well.

12.1.4. Generating the %files section with RUST
For the most part, maintaining RPM spec files is relatively straightforward. Creating spec files from
scratch, however, can be a little bit more challenging. Tools like rpm-spec-mode for emacs can help
with the process, generating skeleton spec file templates that can be filled in, but these sorts of tools
do not address the step that most new RPM packagers seem to find most difficult: generating the
%files section. Creating a complete, accurate list of all needed files supplied by an application can be
difficult, particularly when it is an application with which you are unfamiliar. Most software supports
installation to a temporary location; if the software you are packaging allows this, generation of %files
is (almost) as simple as using BuildRoot to install the application to a temporary directory, then running
an ls -lR command in that subdirectory to see all the installed files and directories. Even then, though,
the output from ls -lR must be cleaned up and converted into %files format for adding to the spec file.
All of this takes time.

setup.sh and MakeRPM.pl

217

A couple of tools exist to reduce the amount of work needed for this stage of the process, automating
the generation of the %files section of spec files. The most sophisticated of these toolsets is RUST.

Cross Reference

Download RUST from www.rusthq.com.

RUST consists of two tools: crust and rust. The crust command provides a command-line tool that can
create a chroot() jail, in which software can be built and installed, and then automatically generate a
spec file that documents the files that were installed. This not only eliminates the need to generate
a %files section for a spec file manually but also removes the need to modify software to support
installation to a temporary location using BuildRoot, a sometimes difficult task.

The rust command provides a graphical front end to the crust command, as shown in Figure 13-3.

54965-0 Fg1303.tiff here

Figure 13-3: rust, a drag-and-drop spec file generator

The rust command provides a graphical interface that can be used to control crust and supports drag-
and-drop creation of spec files. In the rust interface, two file trees are displayed. The left-hand tree
displays the local file system, while the right-hand tree displays the file tree inside the crust chroot()
jail. Files that should be packaged together can just be dragged from their current locations on the
system (displayed in the left-hand tree) to their final destinations in the right-hand tree. You can then
click the makeRPM choice to generate an RPM containing those files. Although not terribly useful for
packages being generated from source code, this feature can greatly simplify creation of RPMs of
applications that are only supplied in binary format (such as the Linux Adobe Acrobat reader).

RUST's rust application can be useful in some circumstances (providing new developers a graphical
tool that can be used to generate binary RPMs), and crust is more generally useful for packaging
difficult-to-package software that needs to be built and installed in a chroot() jail. Unfortunately,
development of RUST appears to have stopped, so extension of RUST to become a more generally
useful IDE for RPM generation is not likely to happen. However, the project is licensed under the
GNU GPL (Chapter 27, Licensing RPM), so it might be resumed by another developer or team of
developers.

12.1.5. setup.sh and MakeRPM.pl
Other tools that have been developed to simplify the process of creating an RPM spec file take an
entirely different approach. Tools such as setup.sh, available from www.mmedia.is/~bre/programs/
setup.sh, are intended to function as wrappers around the existing build commands (./configure
and make) for software. These types of tools take the approach of using the standard build tools
for software (since those tools must always be used to build the software, whether using RPM or
compiling the software from a source tarball) and capturing the output to generate an RPM spec file
automatically.

The MakeRPM.pl Perl script, available from www.perl.com/CPAN/modules/by-authors/id/JWIED,
is another example of such an approach. MakeRPM.pl is a more specialized tool than setup.sh,
as MakeRPM.pl is intended only for producing RPMs from Perl modules packaged in CPAN
(www.cpan.org). It is implemented as a wrapper around the standard commands (perl Makefile.PL ;
make ; make test ; make install) used to install Perl CPAN software.

MakeRPM.pl actually works quite well for its intended purpose@mdproducing packages of CPAN
modules. The setup.sh script is currently viewable mainly as a proof of concept, rather than being

Chapter 12. Supplemental Packaging Software

218

a generally universal automatic spec file generator. In the future, when spec files are likely to be
representable using a formal closed-syntax grammar, it is possible that more generalized spec file
generation tools will be developed. Until that time, however, some of the previously mentioned tools,
particularly the VIM and emacs extensions, can provide assistance when manually generating spec
files.

Cross-reference

For more discussion of the future of RPM, you can turn to Chapter 23, RPM Feature Evolution .

12.1.6. Manipulating Package Files with rpm2cpio
Normally, RPM packagers are concerned with taking source code or binary files, and producing an
RPM that contains those files and can be used to install them on end-users' systems. Sometimes,
packagers and end users find themselves in the opposite position, that of having a source or binary
RPM package file and needing to extract its contents. An RPM can always be installed to access
its contents (either source code, patches, and a spec file which get put under %_topdir for a source
RPM, or software which gets put in system directories for a binary RPM), but that is often overkill. I
frequently want to extract a single patch file, or the spec file, from a source RPM, but I don't really
need to install the entire source RPM. Similarly, people often want to extract the contents of RPMs on
systems that do not come with RPM, such as Solaris.

Fortunately, tools are available that can process RPM package files into a format from which their
content can be extracted. Structurally speaking, RPM package files are compressed cpio archives that
have additional binary data added to the beginning containing various meta-data about the package
(specifying its architecture and OS, for example), a GPG signature if the package is signed, and so
forth. If this binary data is removed from the beginning of the RPM package file, the remainder is
a System V Release 4-style cpio file that can be manipulated using any reasonably complete cpio
command. Several different tools, each sporting the name rpm2cpio, are available which can do this
binary data removal, converting an RPM package file into a standard cpio archive.

RPM ships with an rpm2cpio utility that can be used to convert RPM package files to cpio files.
(Chapter 2, RPM Overview introduces the rpm2cpio utility.) For example, if you have a source
RPM package file and want to extract its files without having to install it, you can process it through
rpm2cpio. The rpm2cpio command takes as input an RPM package file, and produces a cpio file on
standard output. For example, to redirect the output to a file, use a command like the following:

$ rpm2cpio fluxbox-0.1.8-2.src.rpm > fluxbox-0.1.8-2.cpio

$

This command creates a cpio archive from the package. You can later use cpio commands on the
output file. You can also pipe the output of rpm2cpio through the cpio command:

$ rpm2cpio fluxbox-0.1.8-2.src.rpm | cpio -i -d

656 blocks

$

This command extracts the contents of the package.

This rpm2cpio command is bundled with RPM and is installed on most RPM-based Linux distributions,
including Red Hat Linux. However, it is less useful on systems that do not come with RPM, such as

Manipulating Package Files with rpm2cpio

219

Solaris. This "standard" implementation of rpm2cpio is written in C, and so must be compiled before it
can be used. Since most commercial Unix systems do not come with a C compiler by default (unlike
Linux and other free Unixes, such as the BSD operating systems), compiling this rpm2cpio code can
be a major undertaking.

Fortunately, rpm2cpio implementations are also available in a couple of other languages, in more
easy-to-install formats for other operating sytsems, including as a Bourne shell script or a Perl script.
The Bourne shell syntax should work on any reasonably modern Unix system (and even a few non-
Unix systems; it also works on Microsoft Windows under cygwin, for example). The script in Listing
13-1should be saved to a file named rpm2cpio.sh, marked executable, and copied to a directory in
your path.

Listing 13-1: rpm2cpio as a Bourne Shell script

#!/bin/sh

pkg=$1

if ["$pkg" = "" -o ! -e "$pkg"]; then

echo "no package supplied" 1>&2

exit 1

fi

leadsize=96

o=`expr $leadsize + 8`

set `od -j $o -N 8 -t u1 $pkg`

il=`expr 256 * \(256 * \(256 * $2 + $3 \) + $4 \) + $5`

dl=`expr 256 * \(256 * \(256 * $6 + $7 \) + $8 \) + $9`

echo "sig il: $il dl: $dl"

sigsize=`expr 8 + 16 * $il + $dl`

o=`expr $o + $sigsize + \(8 - \($sigsize \% 8 \) \) \% 8 + 8`

set `od -j $o -N 8 -t u1 $pkg`

il=`expr 256 * \(256 * \(256 * $2 + $3 \) + $4 \) + $5`

dl=`expr 256 * \(256 * \(256 * $6 + $7 \) + $8 \) + $9`

echo "hdr il: $il dl: $dl"

hdrsize=`expr 8 + 16 * $il + $dl`

o=`expr $o + $hdrsize`

Chapter 12. Supplemental Packaging Software

220

dd if=$pkg ibs=$o skip=1 2>/dev/null | gunzip

After you have marked this file as executable and placed it in your command path, you can use the
script just like the C language implementation of rpm2cpio. This script also takes an RPM package
file as input and produces a cpio file on standard output, and so should be used in conjunction with
redirection or a pipe:

$ rpm2cpio.sh fluxbox-0.1.8-2.src.rpm | cpio -i -d

656 blocks

$

In this case, I piped the output to cpio, directly extracting it. I could have redirected the output of
rpm2cpio.sh to a file instead.

In addition to the Bourne shell implementation of rpm2cpio, a version has been written in Perl
by Roger Espel Llima. The Perl rpm2cpio implementation should work on any system that has a
reasonably modern Perl interpreter. To use this version of rpm2cpio, the script in Listing 13-2 should
be saved to a file named rpm2cpio.pl, marked executable, and copied to a directory in your path.

Listing 13-2:The Perl version of rpm2cpio, rpm2cpio.pl

#!/usr/bin/perl

Copyright (C) 1997,1998,1999, Roger Espel Llima

#

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and any associated documentation files (the "Software"), to

deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

#

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

SOFTWARE'S COPYRIGHT HOLDER(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

Manipulating Package Files with rpm2cpio

221

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE

(whew, that's done!)

why does the world need another rpm2cpio? because the existing one

won't build unless you have half a ton of things that aren't really

required for it, since it uses the same library used to extract RPM's.

in particular, it won't build on the HPsUX box i'm on.

sw 2002-Mar-6 Don't slurp the whole file

add a path if desired

$gzip = "gzip";

sub printhelp {

print <<HERE;

rpm2cpio, perl version by orabidoo <odar\@pobox.com> +sw

dumps the contents to stdout as a cpio archive

use: rpm2cpio [file.rpm] > file.cpio

Here's how to use cpio:

list of contents: cpio -t -i < /file/name

extract files: cpio -d -i < /file/name

HERE

exit 0;

}

if ($#ARGV == -1) {

printhelp if -t STDIN;

$f = "STDIN";

} elsif ($#ARGV == 0) {

Chapter 12. Supplemental Packaging Software

222

open(F, "< $ARGV[0]") or die "Can't read file $ARGV[0]\n";

$f = 'F';

} else {

printhelp;

}

printhelp if -t STDOUT;

gobble the file up

##undef $/;

##$|=1;

##$rpm = <$f>;

##close ($f);

read $f,$rpm,96;

($magic, $major, $minor, $crap) = unpack("NCC C90", $rpm);

die "Not an RPM\n" if $magic != 0xedabeedb;

die "Not a version 3 or 4 RPM\n" if $major != 3 && $major != 4;

##$rpm = substr($rpm, 96);

while (!eof($f)) {

$pos = tell($f);

read $f,$rpm,16;

$smagic = unpack("n", $rpm);

last if $smagic eq 0x1f8b;

Turns out that every header except the start of the gzip one is

padded to an 8 bytes boundary.

if ($pos & 0x7) {

$pos += 7;

$pos &= ~0x7;# Round to 8 byte boundary

seek $f, $pos, 0;

Manipulating Package Files with rpm2cpio

223

read $f,$rpm,16;

}

($magic, $crap, $sections, $bytes) = unpack("N4", $rpm);

die "Error: header not recognized\n" if $magic != 0x8eade801;

$pos += 16;# for header

$pos += 16 * $sections;

$pos += $bytes;

seek $f, $pos, 0;

}

if (eof($f)) {

die "bogus RPM\n";

}

open(ZCAT, "|gzip -cd") || die "can't pipe to gzip\n";

print STDERR "CPIO archive found!\n";

print ZCAT $rpm;

while (read($f, ($_=''), 16384) > 0) {

print ZCAT;

}

close ZCAT;

After set up, rpm2cpio.pl works much like the C and Bourne shell versions, so the following command
can be used to generate a cpio archive from an RPM package file:

$ rpm2cpio.pl fluxbox-0.1.8-2.src.rpm | cpio -i -d

CPIO archive found!

656 blocks

$

Depending upon the system you are on, one or more of these three rpm2cpio programs should work.
All three are useful any time you want to extract a file or files from an RPM package file but do not
actually need to install the RPM.

Chapter 12. Supplemental Packaging Software

224

12.2. Summary
Creating RPM spec files and maintaining those files can be a difficult chore. A number of tools and
add-ons for text editors have sprung up to help make this less of a chore.

Users of the two most common Linux text editors, vi and emacs, can use add-ons that understand the
RPM spec file syntax. These add-ons help reduce errors and, though the use of macros, can speed
development of spec files by automating some of the tasks.

The RUST tool provides a graphical interface for creating spec files that can simplify a lot of the work
normally required.

Once you’ve created an RPM package, you can use the rpmlint command to flag missing, incomplete,
or incorrect elements in your RPMs.

Another tool, called rpm2cpio in its various incarnations, allows you to extract files from an RPM
package by taking advantage of the fact that RPM files use the cpio format internally. The rpm2cpio
tools can output RPM data into the cpio format directly; you can then pipe the output to the cpio
command to extract.

After all this help in making RPMs and spec files, the next chapter covers a set of best-practice
guidelines to help avoid problems when making your RPMs.

Chapter 13.

225

Packaging Guidelines
This chapter covers:

• Avoiding common mistakes

• Following good practices

RPM is a complex system that helps manage thousands of packages for a complex operating system.
Furthermore, RPM is very, very flexible. This flexibility makes it important that you follow the rules to
create packages the proper way. Otherwise, you’ll face a host of problems with your RPMs. Following
some best practices guidelines will help you avoid future problems as you release RPM updates.

This chapter covers ways to avoid common problems as well as best-practice guidelines for creating
your own RPMs.

13.1. Avoiding Common Problems
Developers creating RPMs seem to hit many of the same roadblocks. This section covers some of the
most common problems faced by RPM users and package builders.

Warning

Never, never, never build RPMs logged in as the root user. See the section on Building for details.

13.1.1. Scan the mailing lists
Many people have tried to solve a lot of serious problems that arise when using RPM, so if you are
facing difficulties, chances are someone else has tackled those issues before. The RPM mailing list
provides a technical forum for discussing RPM issues and problems. In many, if not most, cases, you
can find answers to problems by scanning the mailing list archives.

You can also sign up for the mailing list so that you can send in requests and see the responses.

Cross Reference

For details on viewing the RPM mailing list archives and signing up for the list, see www.rpm.org/
mailing_list/. See http://groups.yahoo.com/group/rpm-list/messages for an archive of the list.

If you are working with RPMs and pushing the envelope for other operating systems or complicated
packages, this list is definitely worth a look.

Before sending any messages, though, be sure to look through the message archives to see if the
message has already been answered. You will save time waiting for a response if you can get an
archived response right away.

You should also ask any questions in a way that will generate the most helpful responses. This
includes:

Do your homework first. Check to see if your question has already been answered by looking at the
mailing list or newsgroup archives. In the end, this saves you the most time, as you don’t have to wait
for answers.

Describe the problem and the symptoms as clearly as possible. After all, this is what you want help
with.

http://groups.yahoo.com/group/rpm-list/messages

Chapter 13. Packaging Guidelines

226

Use clear subject headers. This is the first part of your message that people will read. If you are not
clear, the key people who could answer your questions may never even read your message. And, if
they don’t read the message, you will never get an answer.

Send your message in plain text, not HTML. Do not include a separate HTML copy of your message.
This just makes it harder to read, especially for people who read collected digests of mailing lists.

Make it easy for people to reply to you. Include your email address in your message. You might want
to include a line that states something like “Please send your reply to me at” and then provide your
email address.

Cross Reference

These tips on asking questions come from the Internet document on How to Ask Questions the Smart
Way by Eric Steven Raymond and Rick Moen, available at multiple sites, including www.owlriver.com/
tips/smart.

In addition to the RPM mailing list, there is also a Usenet newsgroup, named linux.redhat.rpm. You
can read this newsgroup with any newsreading program.

Note

Newsgroups are sometimes called discussion groups.

13.1.2. Use rpmbuild
In older versions of RPM, you called the rpm –ba command to build RPMs. With RPM 4.1, you must
use the rpmbuild command. If you have the rpmbuild command available, even if you are running an
older version of RPM, run rpmbuild instead of rpm to build your RPMs.

You’d be surprised at how such a simple item is one of the most-asked questions on the RPM mailing
list. That’s because the rpm –ba command, and the other –b options, no longer work in RPM 4.1.
These options are supported by the rpmbuild command.

13.1.3. Don’t try to defeat the system
If you are finding your spec files getting more and more complex, and that you are trying to disable
RPM features, chances are you are trying to defeat the system. This is not a good idea.

The RPM system works in a certain way. You may not always agree with the way it works, but if you
try to make it work in contrary ways, in most cases you’ll end up fighting RPM to no avail.

There are certain rules, and more importantly certain conventions that RPMs should follow. The
previous chapters in this section on building RPMs have outlined those conventions. Follow them.
When you go against these conventions, you are really trying to defeat how the RPM system works.

13.1.4. Turn off automatic dependency generation
When you build an RPM, the rpmbuild command will automatically generate dependencies on Linux
shared libraries and other system commands. You can turn this off if you need to, using a number of
means.

You can disable the automatic generation of dependencies by placing the following directive in your
spec file:

Don't list directories in %files

227

Autoreq: 0

A better approach, though, is to override the %{__find_requires} and %{__find_provides} macros, or
just one of these as needed. You can null out either of these macros by adding commands like the
following to your spec file:

%define __find_requires %{nil}

This approach is better because it allows you to override only the requires checks. In addition, you
can get more specific and simply change how the automatic dependency checks are performed.
For example, you can also change the definitions of these macros to perform normal dependency
generation except for any problematic files or packages. These two macros resolve to shell scripts that
perform the automated dependency checks, as you can see with the rpm --eval command:

$ rpm --eval "%__find_provides"

/usr/lib/rpm/find-provides

rpm --eval "%__find_requires"

/usr/lib/rpm/find-requires

You can override these scripts to filter out any dependencies that cause problems for your packages.

13.1.5. Don't list directories in %files
Unless you really mean it, don’t list directories in your %files section in your spec files. That is because
the rpmbuild program will automatically add all files in that directory to your RPM. If this is a system
directory, such as /usr/bin, your RPM has now claimed ownership for all the files, regardless of the
source package.

To avoid all files in the directory becoming part of the package, list the files explicitly, perhaps
generating the list of files as the program builds.

If you do need a directory installed as part of your package, use the %dir directive, described in
Chapter 9, Working with Spec Files .

13.1.6. Handling circular dependencies
If two packages each depend on the other, you don’t want each package’s spec file to list the other
in a Requires section. If this occurs, the packages won’t install without one of the force options, since
each package will require the other to be installed first.

Cross Reference

Chapter 3, Using RPM covers how to install or upgrade packages while ignoring dependency checks.
In general, you do not want to ignore these checks.

You can work around this issue by using the PreReq directive instead of Requires. For example, if
package A depends on B and package B depends on A, you can place the following in the package B
spec file:

PreReq: A

In addition, you can install both packages at the same time to avoid some of the problems with circular
dependencies. Simply include both packages on the rpm –Uvh command line.

Chapter 13. Packaging Guidelines

228

13.2. Following Good Practices
Working through problems is one thing. It’s best, however, to set up an environment to help avoid
problems all together. The following sections cover what are considered the best practices for creating
RPMs.

Before you make an RPM, you should plan out what you intend to build and how it will be structured.
As you build the RPM, you want to watch out for things that can go wrong, and work from a known
clean environment.

13.2.1. Preparation
Before you start to make an RPM, you need to follow a few steps to ensure you have everything
ready.

13.2.1.1. Create a Source RPM
Having a source RPM allows you to transfer all the sources for a package from one system to another,
along with all the instructions coded in the spec file for actually building the binary package. This is
very handy for keeping track of software, and it is also very important since you can regenerate the
binary RPM at any time from the source RPM. In other words, make the generation of RPMs follow the
RPM conventions and fit this into your normal software build process.

This means that for each RPM you want to build, you really need two: a source and a binary RPM.
This isn’t that hard to do, since you can easily make a source RPM into a binary RPM with the
rpmbuild command.

13.2.1.2. Start with Pristine Sources
In addition to planning on making a source RPM, you should also start with pristine, unmodified
sources for the application you plan to package as an RPM. Starting with pristine sources means you
can reproduce the entire process and recreate the RPM from scratch if necessary. (Quality control and
configuration management people really appreciate this.)

The pristine sources should be exactly the sources you got when you downloaded the application, or
acquired it in house. This doesn’t mean that you won’t have to modify the sources eventually. For that,
you create patches. The key is just to start the process with unmodified sources.

Some RPMs have nearly 100 patches that the rpmbuild command applies when building the RPM.
That is a lot of patches, too many for most applications. Even so, the process is the same. Create a
patch or patches for all the changes you need to make. You can easily specify patches in the spec file.

Cross Reference

Chapter 9, Working with Spec Files covers the spec file.

Keeping your patches separate from the original sources makes it easier to reproduce the RPM from
scratch, and makes it easier to integrate a new version of the base software, since your code, in the
form of patches, is separated from the base software code.

13.2.1.3. Decide What Goes In Each Package
You don’t have to stuff all your software into one RPM. Instead, you can often simplify your RPM by
dividing it into two or three separate (but likely dependent) RPMs.

Preparation

229

For example, the RPM system itself has one RPM for the basic system, rpm, one for developers of the
RPM system, rpm-devel, and one for those building RPMs, rpm-build. Yet another RPM provides the
Python programming API, rpm-python.

Cross Reference

Chapter 16, Programming RPM with Python covers Python programming.

This last division is important. The Python RPM draws in as a dependency the Python system itself.
Adding this into, say, the core RPM package would needlessly complicate the dependencies for that
package.

When dividing your software into RPMs, keep two main issues in mind:

*You want to divide the software into RPMs that fit the model for users of the system.

*You want to divide the software into RPMs such that the separate RPMs are simpler to create and
manage.

The RPM system follows these guidelines, especially the first. Few users will extend the RPM system
itself, which allows RPM team to shed this functionality from the core RPM and contain it in rpm-
devel. Those who build RPMs fit into a different category than those who use RPMs since just about
everybody needs to use RPMs to install packages, but few users actually build RPMs. Again, the
separation works from a user’s perspective.

You also want your package divisions to make each package easier to specify. You can break
particularly tough dependencies into smaller units and simplify things. If the package division doesn’t
simplify things, then it may not be a good idea.

13.2.1.4. Create a Test RPM Database
You don’t always have to work with the system RPM database. In fact, while developing RPMs, you
probably don’t want to change the system database.

If you have a test RPM database, you can install your RPMs into this test database. To do so, use
the --justdb, --dbpath, --prefix, and --badreloc options. These options allow you to install an RPM into
just the database, using a different database, with a different root file location (into a test directory, for
example) and handle all files that were not marked for relocation, respectively.

Note

The --test option when installing also allows you to just test the install, not actually perform it.

Combined, all these options mean you can use an RPM database just set up for testing and that
problems won’t impact your working Linux systems. To make this work, though, you need a test RPM
database.

To be rigorous, you should create the test RPM database from scratch from a known set of packages.
This will allow you to exactly verify the behavior of your RPM under different system configurations.
This is the best choice since you should install the packages under a known, and non-root, directory
hierarchy to avoid having file problems with the working system.

If you want to cheat, you can copy your real RPM database to another directory and use that. Note
that in this case, the file paths in the database will point to the real file locations on disk.

Chapter 13. Packaging Guidelines

230

Regardless of how you create a test database, recreate the database each time you run a test, so
that you are sure of a known starting state. Usually this is as simple as copying a master test RPM
database into a directory you use for running tests.

13.2.2. Building
Building RPMs isn’t as easy as it should be. You’ll often need to try again and again to get the
rpmbuild command to create a working RPM. This section covers best practices to follow when
performing the actual build of the RPM.

13.2.2.1. Use Tools
Using tools can help speed up the RPM-making process, as well as give you a head start in
learning how RPMs work. RPM-building tools such as the Red Hat plugin for the Eclipse Integrated
Development Environment have proven really helpful.

Cross Reference

Chapter 12, Supplemental Packaging Software covers RPM-building tools. Chapter 26, Linux Text
Editors and Development Tools covers the Eclipse Integrated Development Environment.

Even though so-called real Linux hackers can make a working virtual memory system with just the cat
command, don’t scoff at tools. Your time is too valuable.

Another useful tool is the gendiff program that comes with the RPM release. The gendiff program
makes it easier to create patches by avoiding the need to keep a separate directory of the original
sources, The gendiff program also works on all changed files within a directory, making a patch for
everything you modified.

To work with gendiff, you need to first save a backup copy of each file you intend to edit prior to
editing. Use a consistent file-name extension for the saved copies of the files, such as .orig, short for
original. After you edit some files, run the gendiff command as follows:

$ gendiff directory_name .saved_extension > patch_name.patch

For example, if you saved the original files to a .orig extension, you can create a patch in a directory
named src (short for sources) with a command like the following:

$gendiff src .orig > mypatch.patch

The patch file mypatch.patch will contain all the differences detected for all files in the given directory.

13.2.2.2. Never Build RPMs as Root
Never, never, never build RPMs logged in as the root user. Always build your RPMS while logged in
as a normal user. This is hard to remember since you must be logged in as root to install an RPM. And
you’ll want to test each RPM you create to see if it can install cleanly.

Even so, never build RPMs logged in as the root user. The RPM spec file has a number of scripts and
commands. An error in any of these could cause damage to your system. This includes modifying
files, removing files, or copying new contents on top of system files. The root user has permission to
perform all these operations.

To avoid all this, build your RPMs while logged in as a normal user. Any problematic scripts should
generate errors.

Building

231

13.2.2.3. Create a Digital Signature
RPM 4.1 and later revisions place more importance on signing your packages. The rpm command will,
by default, verify signatures on each package it reads.

Therefore, you should create a digital signature for your packages, if only to meet user expectations.
In addition, you should place a copy of your digital signature on your organization’s Web site and
public key servers. Having multiple copies in multiple locations helps prevent malicious users from
impersonating your keys.

Cross Reference

Chapter 11, Controlling the Build with rpmbuild covers signing packages.

13.2.2.4. Copy Smartly
Your Linux distribution probably includes more than one CD-ROM chock full of RPMs. Each of these
RPMs has a spec file. You can examine these spec files and see how others choose to build their
RPMs. Rather than starting from scratch, you can copy declarations from these spec files into your
spec file.

Not all these packages were made smartly. Some spec files, as you will see, are a large mess.
Obviously, don’t copy these. Look for clean spec files with clear directives.

13.2.2.5. Set Up the BuildRoot
A BuildRoot directive sets the location where your code will be built. The convention is for you to
define a subdirectory beneath the _tmppath directory. For example:

BuildRoot: %{_tmppath}/%{name}-buildroot

Once set, rpmbuild defines the RPM_BUILD_ROOT environment variable to the value specified for the
BuildRoot.

With the rpmbuild command, you can use the --buildroot option to specify a directory to use to override
the BuildRoot directive in the spec file.

Using a BuildRoot set to a directory that normal users have write access to allows you to build the
package logged in as a normal user. It also helps separate the contents of your package from those of
other RPMs.

Always define a BuildRoot.

13.2.2.6. Add changelog entries for each new version
Each time you create a new version in RPM format, you should add an entry to the change log. This
allows administrators to get a better idea about what changed from the previous version.

The change log can help people decide whether or not to upgrade a package. A log entry about a
security fix, for example, provides useful information to users.

13.2.2.7. Define the Group For Your Package
Packages are categorized into groups. These group names, while not always the best, appear in the
graphical tools such as the Red Hat package manager. If your application is a Linux shell program,

Chapter 13. Packaging Guidelines

232

then users will expect to find it in the System Environment/Shells group and not the Development/
Languages or System Environment/Daemons groups. This is a rather small detail, but it helps users
find your package in the huge array of Linux RPMs.

The official list of RPM groups is located in /usr/share/doc/rpm-4.1/GROUPS for RPM 4.1, and
similarly-named directories for other RPM versions.

13.3. Summary
This chapter covers guidelines for avoiding problems when creating RPMs and following best
practices to avoid future problems as well.

When trying to avoid common problems, your best starting point is the RPM mailing list and
newsgroup.

For best practices, you should start at the very beginning when you are planning what to build into
an RPM. Always start with pristine sources and then patch as needed. Your RPM should include the
pristine sources and any necessary patches. You should always create a source RPM, so that you can
reproduce your RPM anywhere.

When building RPMs, copy good examples of spec files, as this will get you going far more quickly
than any other technique. Use tools to help automate parts of your RPM-building process.

Never build RPMs when logged in as the root user.

This chapter ends the section on building RPMs. The next section covers programming to the RPM
APIs.

Chapter 14.

233

Automating RPM with Scripts
This chapter covers:

• Deciding when to program and when to script

• Examining RPM files with scripts

• Querying the RPM database with scripts

The rpm command provides a very high-level view of package management. Most of the operations
you need to perform require only a single invocation. Some of the command-line options to the rpm
command tend to get very complex, however, especially for detailed queries. That’s where scripting
can help.

This chapter covers scripting, specifically shell scripting, with the rpm command, especially for
newcomers to Linux scripting

14.1. Scripting
Scripting allows you to quickly write new commands in a language, called a scripting language,
that can help automate your work. Used heavily by system administrators and lightly by software
developers, scripts can help remove some of the tedium from your day-to-day tasks. Scripts can also
hold the complex query formats used with the rpm command so you don’t have to remember them.

Scripts start out as text files. These text files hold commands in the scripting language. Most of these
script file commands run commands installed on your system, such as rpm. To run a script, invoke a
command, called an interpreter, that reads in the script file and executes the commands inside the
script.

Programming is usually considered different from scripting, even though there are many similarities.
Programs start out as text files. These text files hold commands in the programming language and
sometimes, not often, calls to commands installed on your system. Programs generally involve more
work than scripts and are generally larger, containing more commands.

Furthermore, most programs need to be compiled. A separate command parses the program text files
and generates some form of machine code. Multiple pieces of a program may be linked together to
form a command you can call from your shell prompt.

Some programming languages, such as Java or C#, are compiled to a generic bytecode format. A
compiled Java program, for example, is the same no matter what the architecture. To run such a
program, you need a runtime engine such as the java command provides. (Runtime engine is a fancy
term for interpreter.)

Such differences between scripting and programming sometimes get in the way of performing real
work. For example, I once worked with a group of people who were convinced that they were not
programmers. They felt that programming was an art that was far beyond them. Yet, they wrote
hundreds of kilobytes of scripts to create a sophisticated graphical interface for a Computer-Aided
Design system. In my mind, they were programming (and doing quite well at it). In their minds, though,
there was a clear distinction between scripting@mdwhat they could do@mdand programming, which
was beyond them, they thought.

Don’t get caught up in this. Use the right tool for the job.

Chapter 14. Automating RPM with Scripts

234

14.2. Distinguishing Scripting Languages from
Programming Languages
Experts differ regarding what defines a scripting language and what defines a programming language.
It’s clear that languages such as Python blur the old distinction between programming and scripting.

Originally, scripting was writing small files of commands that invoked other system commands. For
example, you could write a script that wraps the Linux file command. Scripts were executed by
scripting-language interpreters that parsed each command one at a time and then executed the
command.

Modern scripting languages, such as Tcl, are parsed at runtime and compiled into an internal bytecode
format. Once compiled, there is no real difference from a language associated with programming such
as Java.

With a scripting language

*You generally don’t have to compile the script in advance. The scripting language interpreter may
compile the program, often to an internal byte code, but you don’t have to invoke a compiler as a
separate step.

*The facilities of the language generally provide a higher level and more abstract level of interaction
with the system than with programming languages. For example, writing socket-based networking
code in Tcl requires a lot less code than writing the same code in a programming language such as C.
Tcl provides a more abstract view of networking; therefore, your code is a lot simpler.

*The commands in the scripting language are mostly the commands available to you on the command
line. Scripting languages introduce their own commands, too.

*The language is generally identified as a scripting language. This is more consensus than anything
else. Forth is considered an interpreted programming language, while Perl is considered a scripting
language.

Table 15-1 lists some of the more common scripting and programming languages. Note that these are
the generally-accepted categories for these languages, not hard and fast rules. This should not stop
you, for example, from writing programs in Perl or Python. The distinctions between programming and
scripting have blurred in recent years.

Table 15-1 Common Scripting Languages and Common Programming Languages

Scripting Languages Programming Languages

Bash (Bourne Again shell) Csh (C shell)
JavaScript Ksh (Korn shell) Lua MS-DOS batch
files Perl Python Ruby Sh (Bourne shell) Tcl

Assembler BASIC C C++ C# FORTRAN Forth
Java LISP Modula-2, Modula-3 Oberon Pascal

14.3. Deciding When to Program and When to Script
Just as the distinction between programming and scripting languages has blurred in the last few years,
so have the guidelines for when you should program and when you should script. The simplest rule
remains, though: Use whatever techniques make you productive. In the end, no one really cares if you
call it a program or a script.

Even so, these guidelines may help:

Shell Scripting Basics

235

*If you have to perform a lot of operations on a lot of RPMs, a program will likely perform much faster
than a script that calls the rpm command over and over.

*If the task is relatively simple, scripting generally works best.

*If you are more experienced with a particular language, use it.

*If you need to perform complex operations, perhaps involving transactions, a program is probably the
right way to go.

*In many cases, programming languages work better for creating graphical user interfaces, although
Python and Perl offer graphical user interface toolkits, such as Perl/Tk or PyQt.

There isn’t one right way to do it. Pick what works best for you.

Cross Reference

This chapter covers shell scripting. Chapter 15, Programming RPM with C covers C programming.
Chapter 16, Programming RPM with Python covers Python scripting and programming, and
Chapter 17, Programming RPM with Perl covers Perl scripting.

14.4. Shell Scripting Basics
For newcomers to scripting, don’t worry. A script, in this case a shell script, is merely a text file
with commands mostly the same as the commands you can type at the keyboard. I’ll point out the
differences.

The following sections quickly introduce scripting for those new to this venture.

14.4.1. Writing a script
For your first venture, enter the following script into a text file:

rpm -qa | grep rpm

This script has a two-part command. The rpm –qa part queries all RPM packages, as covered in
Chapter 3, Using RPM . The grep rpm part finds only packages with rpm in their names. This is a very
simple script, but it can serve to show how to work with scripts.

Save this file under the name listrpmpkgs, since this script lists RPM packages.

Note

If you’re new to Linux, you’ll notice there’s no program named Notepad.exe. There are, though, a
plethora of Linux text editors to choose from. See Chapter 26, Linux Text Editors and Development
Tools for a listing of Linux text-editing tools.

14.4.2. Running a script
Once you’ve entered a script, you can run it with the sh command, as shown following, passing the
name of your script to the sh command:

$ sh listrpmpkgs

librpm404-devel-4.0.4-8x.27

Chapter 14. Automating RPM with Scripts

236

librpm404-4.0.4-8x.27

rpm404-python-4.0.4-8x.27

rpm-4.1-1.06

rpm-devel-4.1-1.06

gnorpm-0.9-1

rpm-python-4.1-1.06

redhat-rpm-config-8.0-1

rpm-build-4.1-1.06

rpmrebuild-1.0-0

Type the command you have placed in your script at the command line. There should be no difference
in the output. For example:

$ rpm -qa | grep rpm

librpm404-devel-4.0.4-8x.27

librpm404-4.0.4-8x.27

rpm404-python-4.0.4-8x.27

rpm-4.1-1.06

rpm-devel-4.1-1.06

gnorpm-0.9-1

rpm-python-4.1-1.06

redhat-rpm-config-8.0-1

rpm-build-4.1-1.06

rpmrebuild-1.0-0

14.4.3. Problems running scripts
The previous script example required the sh program, a Linux shell, to run the script. You also had to
have the script file, such as listrpmpkgs, available. So, if you have stored the file in /home2/bin, to run
the script, use the following command:

$ sh /home2/bin/listrpmpkgs

That’s not very convenient. Furthermore, you always have to remember where you stored the script
file listrpmpkgs. To make this command work better, you can turn your script into a command.

14.4.4. Turning a script into a command
To turn a script into a command, do three simple things:

Turning a script into a command

237

1.Add a special magic comment to the start of the file so Linux recognizes your text file as a command
script.

2.Change the permissions on the file so that it is marked as executable.

3.Copy the file to a directory located in your command path.

Shell scripts use a # to indicate a comment, text intended for human readers that can help explain the
purpose of the script. By convention, Linux shells use a #! comment in the first line of a script file as a
special marker that indicates the file is a shell script. The text that comes after the #! holds the name of
the command that should be used to run the script. In almost all cases, that command should be /bin/
sh for a shell script.

So edit the listrpmpkgs script again, and add the magic comment so that the file reads as follows:

#!/bin/sh

rpm -qa | grep rpm

Make sure the #! comment starts at the beginning of the first line.

Next, change the permissions on the script to mark it as an executable program. Use the chmod
command to do this. The chmod command changes the file permissions. To see the permissions, run
the ls –l command before changing the permissions:

$ ls -l listrpmpkgs

-rw-rw-r-- 1 ericfj ericfj 31 Nov 7 20:02 listrpmpkgs

The first set of characters, the -rw-rw-r--, indicate the permissions in three batches: permissions for the
file owner, the owner’s group of users, and world (everyone else). The rw means read and write, and
the r alone means read only for everyone not the owner and not in the owner’s group.

To add the permission to execute the file for the file owner only, use the following command:

$ chmod u+x listrpmpkgs

In this command, the u stands for the user who owns the file (for historical reasons, an o stands for
others, not owner). The +x means add the x permission, short for execute permission.

After running this command, you can see the revised permissions.

$ ls -l listrpmpkgs

-rwxrw-r-- 1 ericfj ericfj 31 Nov 7 20:02 listrpmpkgs

Cross Reference

Use the man chmod command to see more information on this command.

You now have a command you can run locally. For example:

$./listrpmpkgs

librpm404-devel-4.0.4-8x.27

librpm404-4.0.4-8x.27

Chapter 14. Automating RPM with Scripts

238

rpm404-python-4.0.4-8x.27

rpm-4.1-1.06

rpm-devel-4.1-1.06

gnorpm-0.9-1

rpm-python-4.1-1.06

redhat-rpm-config-8.0-1

rpm-build-4.1-1.06

rpmrebuild-1.0-0

The next step is to copy the file to a directory in your system command path. To see which directories
are in your path, run the following command:

$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/home/ericfj/bin:/usr/java/j2sdk1.4.0_01/bin

Pick one of these directories. The /usr/local/bin directory is a common place to share locally created
commands. If this is a personal command for your own use only, a directory under your home directory
will be better. In this example, the /home/ericfj/bin is one such directory.

Copy the script file to a directory in your command path, and you are ready to go.

Note

If you use the C shell, csh, or the T C shell, tcsh, you need to run the rehash command to tell the shell
to look again at the set of commands available in your command path.

Enter the following command:

$ listrpmpkgs

librpm404-devel-4.0.4-8x.27

librpm404-4.0.4-8x.27

rpm404-python-4.0.4-8x.27

rpm-4.1-1.06

rpm-devel-4.1-1.06

gnorpm-0.9-1

rpm-python-4.1-1.06

redhat-rpm-config-8.0-1

rpm-build-4.1-1.06

rpmrebuild-1.0-0

Passing command-line options to your script

239

You have now extended the Linux command set with your own command.

Note

Windows users may be used to the convention that program file names end in .exe and scripts end
in .bat or .cmd. When you run these programs or scripts, you don’t include the extension, exe, .bat,
or .cmd. With Linux and UNIX, though, the full file name is important, so if you name your script
rpminfo.bat, you must type rpminfo.bat each time you run the script. That’s why most Linux programs
and scripts have no filename extension.

If you want to share your script with others, you should give them the right to execute it as well. You
can do that with the following command:

$ chmod a+x listrpmpkgs

In this case, the a stands for all users.

14.4.5. Passing command-line options to your script
The listrpmpkgs script used so far isn’t very useful. It performs one command and that’s it. We cannot
customize it without writing a new script.

One way to make a script more flexible is to allow it to use command-line options. Just like the rpm
command accepts a zillion options, you can make your scripts accept options.

Shells define special variables for the command-line options passed to the shell. Table 15-2 lists these
options.

Table 15-2: Shell variables for command-line options

Variable Holds

$0 The name of the script itself, from the command
line

$1 The first option

$2 The second option

$3 The third option

$4 The fourth option

$5 The fifth option

$6 The sixth option

$7 The seventh option

$8 The eighth option

$9 The ninth option

$* All command-line options

$# Holds the number of command-line options

Note

Use $#argv in place of $# if you use the C shell to run your scripts.

You can use these variables to allow the user to pass the text to search for, instead of always
searching for rpm. With this addition, your new script, renamed rpmgrep, follows in Listing 15-1:

Chapter 14. Automating RPM with Scripts

240

Listing 15-1: rpmgrep

#!/bin/sh

rpm -qa | grep $*

This script now expects a command-line option that holds the text to search for. Mark this script as an
executable; then you can run it as follows:

$./rpmgrep python

python-devel-2.2.1-17

gnome-python2-gtkhtml2-1.99.11-8

gnome-python2-canvas-1.99.11-8

gnome-python2-1.99.11-8

rpm404-python-4.0.4-8x.27

orbit-python-1.99.0-4

gnome-python2-bonobo-1.99.11-8

gnome-python2-gconf-1.99.11-8

libxslt-python-1.0.19-1

libxml2-python-2.4.23-1

python-optik-1.3-2

python-2.2.1-17

rpm-python-4.1-1.06

mod_python-3.0.0-10

python-tools-2.2.1-17

If you want to make this command available, copy it to a directory in your command path as described
in the preceding section.

14.5. Examining RPM Files
When you work with a lot of RPM files, you’ll find that you run the same commands over and over
again for each new package you get. For example, you may want to see what capabilities a package
requires. You can type in the rpm command each time, or write a short shell script with the necessary
command-line options. Listing 15-2 shows this script.

Listing 15-2: rpmdepend

#!/bin/sh

rpm -qp --requires $*

Examining RPM Files

241

This script expects the name of an RPM package file. Run the command as follows:

$ rpmdepend vim-common-6.1-14.i386.rpm

rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(CompressedFileNames) <= 3.0.4-1

/bin/sh

/usr/bin/awk

libc.so.6

libc.so.6(GLIBC_2.0)

libc.so.6(GLIBC_2.1)

Another common task I perform involves listing all the files in an RPM along with the descriptive
information on the package. This can really help, since so many Linux packages have nondescriptive
names such as dia and anaconda.

Listing 15-3 shows the rpminfo script.

Listing 15-3: rpminfo

#!/bin/sh

rpm -qilp $* | less

This script lists a potentially long set of lines, so the script pipes the output to the less command. For
example:

$./rpminfo perl-XML-Dumper-0.4-22.noarch.rpm

Name : perl-XML-Dumper Relocations: /usr

Version : 0.4 Vendor: &FORMAL-RHI;

Release : 22 Build Date: Tue 06 Aug 2002 01:53:30 PM CDT

Install date: (not installed) Build Host: vegeta.devel.redhat.com

Group : System Environment/Libraries Source RPM: perl-XML-Dumper-0.4-22.src.rpm

Size : 10015 License: GPL

Signature : DSA/SHA1, Tue 06 Aug 2002 02:11:39 PM CDT, Key ID fd372689897da07a

Packager : &FORMAL-RHI; <http://bugzilla.redhat.com/bugzilla>

URL : http://www.cpan.org

Summary : Perl module for dumping Perl objects from/to XML

Description :

Chapter 14. Automating RPM with Scripts

242

XML::Dumper dumps Perl data to XML format. XML::Dumper can also read

XML data that was previously dumped by the module and convert it back

to Perl. Perl objects are blessed back to their original packaging;

if the modules are installed on the system where the perl objects are

reconstituted from xml, they will behave as expected. Intuitively, if

the perl objects are converted and reconstituted in the same

environment, all should be well.

/usr/lib/perl5/vendor_perl/5.8.0/XML/Dumper.pm

/usr/share/man/man3/XML::Dumper.3pm.gz

I use this script so that I know what files a package wants to install.

14.6. Querying the RPM Database
In addition to querying RPM files, you can script the commands you use to query the RPM database.
This is most useful for the long commands with query formats, especially if you have a hard time
remembering all the formats.

14.6.1. Querying for all packages installed at the same time
If you want to list all the packages that were installed with the same transaction ID as a particular
package, for example, you can use a script like rpmtran, in Listing 15-4.

Listing 15-4: rpmtran

#!/bin/sh

tid=`rpm -q --qf "%{INSTALLTID}\n" $*`

rpm -q --tid $tid

This script uses the query format to get the transaction ID, or tid, for a particular package. It then
passes this transaction ID to the rpm command to query for all packages installed with the same
transaction ID.

For example:

$./rpmtran tcl

itcl-3.2-74

tclx-8.3-74

tcl-8.3.3-74

tix-8.2.0b1-74

Reading HTML documentation for a package

243

tkinter-2.2.1-17

14.6.2. Reading HTML documentation for a package
You can combine the rpm command with other commands as well. For example, the rpm –qd
command lists the documentation files with a package. If this documentation is in HTML format, you
can display this documentation in a Web browser such as Mozilla. Furthermore, by convention, the
starting page for HTML documentation should be a file named index.html. Listing 15-5 combines all
these factors:

Listing 15-5: rpmmoz

#!/bin/sh

html_file=`rpm -qd $* | grep index.html | head -n 1 `

echo "Launching Web browser with $html_file"

htmlview $html_file &

This script searches for the documentation for a given package name, finds the first file named
index.html, and launches the Web browser in the background to display this file, using the htmlview
command which will likely run mozilla or your configured Web browser. When you run this command,
you should see output like the following; then the Web browser should appear:

$./rpmmoz rpm-devel

Launching Web browser with /usr/share/doc/rpm-devel-4.1/apidocs/html/index.html

Note

This script does not check for errors. If there are no files named index.html, the script launches the
Web browser anyway. You could fix this by changing the script to validate the html_file variable prior to
launching the Web browser.

14.7. Where to Go From Here
This chapter just introduces the basics for shell scripting. There are many more things you can do.
The online manual pages for the bash or tcsh commands provide a wealth of reference information on
these shells.

A number of Web sites provide tutorials on bash, including http://pegasus.rutgers.edu/
~elflord/unix/bash-tute.html and www.linuxorbit.com/modules.php?
op=modload&name=Sections&file=index&req=viewarticle&artid=459. In addition, the Linux
Documentation Project at www.tldp.org/guides.html provides a bash scripting guide, along with a
number of bash- and shell-related how-to documents at www.tldp.org/HOWTO/HOWTO-INDEX/
howtos.html.

Teach Yourself Linux, by Steve Oualline and Eric Foster-Johnson (John Wiley & Sons, 2000),
introduces a number of Linux topics, including text editors and scripting, for those new to Linux. And
Graphical Applications with Tcl and Tk (Hungry Minds, Inc., 1997) by Eric Foster-Johnson, covers
another scripting language, Tcl/Tk.

Chapter 14. Automating RPM with Scripts

244

Use your imagination. Any command that you run often or that is hard to type can be scripted.
Furthermore, you can write complex scripts that automate some of the more tedious tasks you need to
perform.

14.8. Summary
Scripting is the art of writing a set of commands into text files to speed up your work. Programming
is the art of writing a set of commands into text files, compiling the text files, and getting paid more.
Choosing when to program and when to script isn’t always a clear-cut decision, but generally
programs are move involved and complex, while scripts are shorter tools that automate your work.
This chapter provides just a glimpse of all you can do with scripts and the RPM system.

Scripts work very well for capturing obscure syntax options for the rpm command, especially the query
formats. You can figure out a command once and then save the command as a script to save time in
the future.

Scripts aren’t the best choice for all tasks, though. In many cases, you need to write a program to
accomplish your goals. The next chapter delves into the RPM C programming API, rpmlib.

Chapter 15.

245

Programming RPM with C
This chapter covers:

• Using the RPM C library

• Setting up a development environment

• Programming with the RPM C library

• The power of popt for command-line argument processing

• Comparing package files to installed packages

The RPM C library allows you to perform all the operations of the rpm command from within your own
C or C++ programs.

The reason is simple: The rpm command was created using the RPM libraries. These same libraries
are available for you to use in your own programs.

The rpm command itself is quick and, for the most part, simple. So, why would you want to write RPM
programs?

There are many reasons, some of which are listed here:

*Speed: If you need to perform a task on many RPM files such as verifying a large set of files, then
performing the task from one program will be a lot faster than launching the rpm command for each
file.

*Custom options: If you need to do something the rpm command doesn't offer, or doesn't make easy,
then you may want to write your own program.

*Convenience: If you need to make many packages quickly, with custom options, your best bet may
be to create a program suited for your tasks. Before doing this, though, be sure to look into whether
writing a shell script will handle your task adequately. You'll find writing RPM shell scripts goes much
faster than writing whole programs.

*Installation programs: The Windows world has standardized on graphical installation programs such
as InstallShield or InstallAnywhere. The RPM system, on the other hand, has focused on automated
installation with the rpm command. You can combine the best of both worlds by writing a graphical
installation program on top of the RPM system.

*Integration with environments: You may want to better integrate RPM with a Linux desktop
environment such as GNOME or KDE.

*Working with other languages: This book covers programming RPM with C, the core language
for the library, as well as the Python and Perl scripting languages. You can use the RPM library,
though, to help bind with other languages such as Tcl, Ruby, or even C# (especially one of the C#
implementations for Linux).

This chapter and the next cover RPM programming. This chapter covers the RPM C programming
library, which provides low-level access to RPM functionality. The next chapter covers the RPM Python
programming library, which provides a much higher-level of abstraction. If you are attempting to write
a complex RPM program, your best bet is to try the Python API first. Even so, there is a lot you can do
with the RPM C library.

Chapter 15. Programming RPM with C

246

15.1. Programming with the C Library
RPM C programs are C programs that call on functions in the RPM library, often called rpmlib. To use
the rpmlib, you need to set up a C programming environment and install the rpm-devel package.

15.1.1. Setting Up a C Programming Environment
At the very least, you’ll need a C compiler, gcc, and a text editor. The easiest way to get the C
compiler is to install the packages grouped under Software Development with the Red Hat package
management tool.

Cross Reference

See Chapter 7, RPM Management Software for more on the Red Hat package management tool.

The gcc package requires a number of capabilities. Make sure you install all the necessary packages.
Just about every Linux distribution includes gcc and everything you need to develop C programs, so
this should not be a problem.

For text editors, you can use the vi or emacs text editors, or any of a number of graphical editors such
as gedit.

Cross Reference

Chapter 26, Linux Text Editors and Development Tools covers Linux text editors and development
tools.

Once you have a C programming environment set up, you next need to get the RPM library for an
RPM development environment.

15.1.2. Setting Up the RPM Programming Environment
To program with the RPM library, you need to install the rpm-devel package. You must have a
version of rpm-devel that matches your version of the rpm package. If you have Red Hat Linux, your
installation CDs will also have the version of the RPM development package that corresponds to your
system.

Your program should link against the same libraries that are used by the rpm command itself in order
to insure compatibility, so make sure that the version of the rpm-devel package matches the rpm
package itself. In most cases, the best bet is to use the RPM programs and libraries that come with
your version of Linux.

Cross Reference

You can also download the rpm packages from ftp://ftp.rpm.org/pub/rpm/dist/. This site includes
versions of the RPM libraries going back to 1996, ancient history in terms of Linux.

The package you need is rpm-devel. If you installed Red Hat Linux 8.0, the package is rpm-
devel-4.1-1.06. This package includes header files, documentation, and libraries.

15.1.3. Using the RPM Library
All C programs using the RPM library need to include the file rpmlib.h, which defines the core data
structures, constants, and functions. One thing you’ll quickly note is that the RPM C library accesses

Compiling and Linking RPM Programs

247

RPM data at a very low level. This is one reason why many developers are moving to Python for their
RPM programs, since the Python RPM API presents a higher level of abstraction.

Cross Reference

Chapter 16, Programming RPM with Python covers programming RPM with Python.

In addition to rpmlib.h, the header file rpmcli.h defines a high-level API based on the command-line
options to the rpm command. (The cli in rpmcli stands for command-line interface.) Table 16-1 lists
other important RPM header files that make up the major subsystems of the RPM system.

Table 16-1 RPM sub-system header files

File Defines

rpmdb.h RPM database access

rpmio.h RPM input/output routines

popt.h Command-line option processing

In addition, a number of header files define the major data objects in the RPM system and the
functions that operate on these data objects. Table 16-2 lists these header files.

Table 16-2 RPM data object header files

File Defines

rpmts.h Transaction sets

rpmte.h Transaction elements (packages)

rpmds.h Dependency sets

rpmfi.h File information

header.h Package headers

All the RPM include files are located in /usr/include/rpm on most versions of Linux.

Note

You can use the rpm command and the queries introduced in Chapter 4, Using the RPM Database to
determine exactly where the header files are located. Simply execute the following command:

$ rpm –ql rpm-devel

Examine the output of this command for include files.

15.1.4. Compiling and Linking RPM Programs
RPM programs using the rpmlib C API are the same as C programs everywhere. You need to include
the proper header files that define the API calls you need, and link with the right set of libraries.

15.1.4.1. Include Files
The rpm include files are located in /usr/include/rpm, so you should add this directory to the set of
directories that the C compiler looks in for include files with the –I command-line option. For example:

Chapter 15. Programming RPM with C

248

$ gcc –I/usr/include/rpm –c rpm1.c

Note

This also means that you can install the rpm header files in other directories as needed, and just
change the –I command-line option.

To help debug problems, you probably want to add the -Wall (output all warnings) and -g (compile with
debugging information). For example:

$ gcc -Wall -g –I/usr/include/rpm –c rpm1.c

15.1.4.2. Libraries
The main rpm library is librpm.a, or a shared version of this same library. To do most anything with
RPM programming, you need to link in the following libraries, as listed in Table 16-3.

Table 16-3 Required rpm libraries

Library Usage

rpm Main RPM library

rpmdb RPM database library

rpmio RPM input/output

popt Command-line option parsing library

If you are creating RPMs from your C programs, you also need to link in the rpmbuild library. To
compile and link a simple RPM program, you need a command like the following:

gcc -I/usr/include/rpm -o program program.c –lrpmbuild \

-lrpm -lrpmdb -lrpmio –lpopt

On some versions of Linux or on other operating systems, you’ll likely need to link a set of helper
libraries, as shown following:

gcc -I/usr/include/rpm -o program program.c –lrpmbuild \

-lrpm -lrpmdb -lrpmio –lpopt -lelf -lbz2 -lz

If you have installed the rpm libraries in a non-standard directory, you need to use the –L option to
specify where else to look for libraries. For example:

gcc -I/usr/include/rpm -o program program.c –L/opt/lib/rpm \

-lrpmbuild -lrpm -lrpmdb -lrpmio –lpopt -lelf -lbz2 -lz

The -L option tells the cc compiler to look in the /opt/lib/rpm directory as well as in the standard
locations such as /usr/lib.

Note

Starting with RPM 4.2, you should just need to link in the rpm library. The other libraries will get pulled
in automatically if needed.

Getting information on your RPM environment

249

15.1.5. Getting information on your RPM environment
A large part of the RPM system lies in system-specific configuration, including the platform you are
running on, compatible platforms, and locations of various files. The RPM rc and macro systems
support hundreds of options tuned to the specifics of your system, and any customizations you have
configured.

Cross Reference

Chapter 20, Customizing RPM Behavior covers customizing RPM.

Your C programs need to access these RPM system settings to ensure that all data values are
properly set up for your system architecture and installation. So, to start an RPM C program, you need
to read in all the configuration files. To do this, call rpmReadConfigFiles.

int rpmReadConfigFiles(const char *files, const char *target);

The files parameter holds a colon-delimited list of files that make up your system’s configuration. The
target parameter holds the target platform. You can pass NULL for both these parameters to use the
RPM defaults, which is generally what you want.

The rpmReadConfigFiles function returns a 0 on success, or –1 on errors.

Once you have read in the configuration files, you can access values in the configuration, or print it
out.

15.1.5.1. Printing the Configuration
To print out the configuration, call rpmShowRC.

int rpmShowRC(FILE* output);

Pass in an output file to print the configuration to, such as stdout. For example:

rpmShowRC(stdout);

The rpmShowRC function always returns 0.

To control some of the output from rpmShowRC, and other RPM library functions, you can set the
logging verbosity level by calling rpmSetVerbosity:

void rpmSetVerbosity(int level);

For example:

rpmSetVerbosity(RPMMESS_NORMAL);

Table 16-4 lists the verbosity levels from rpmio/rpmmessages.h going from least output to more output.

Table 16-4 Output verbosity levels

Level Usage

RPMMESS_FATALERROR Only critical error conditions and above

RPMMESS_ERROR Only error conditions and above

RPMMESS_WARNING Only warning conditions and above

Chapter 15. Programming RPM with C

250

RPMMESS_QUIET Same as RPMMESS_WARNING

RPMMESS_NORMAL Only significant messages

RPMMESS_VERBOSE Verbose informational messages

RPMMESS_DEBUG Debugging messages, and everything above

You can put together a simple RPM program such as the one shown in Listing 16-1.

Listing 16-1: rpm1.c

/* Show the rpmrc settings. */

#include <stdio.h>

#include <stdlib.h>

#include <rpmlib.h>

int main(int argc, char * argv[]) {

int status = rpmReadConfigFiles((const char*) NULL,

(const char*) NULL);

if (status != 0) {

printf("Error reading RC files.\n");

exit(-1);

} else {

printf("Read RC OK\n");

}

rpmSetVerbosity(RPMMESS_NORMAL);

rpmShowRC(stdout);

exit(0);

}

Compile this program with a command like the following:

$ cc -I/usr/include/rpm -o rpm1 rpm1.c -lrpm -lrpmdb -lrpmio –lpopt

When you run this program, you should see the contents of your configuration printed to the screen.

Getting information on your RPM environment

251

15.1.5.2. Expanding the Value of Macros
With all the rc and macro configuration files, the RPM system has a lot of values, usually called
macros, that you can use to refer to settings. The term macro is used because the values can be more
than simple strings. You can have one macro refer to the value of other macros, for example. The
basic macro syntax is:

%name_of_macro

For example:

%_target

Note

Most of the internal RPM macros start with an underscore, _.

You can expand a macro with the rpm --eval command:

$ rpm --eval %_target

i386-linux

You can also refer to a macro using the following syntax:

%{name_of_macro}

For example:

%{_target}

This syntax makes it easier to include a macro in combinations with other text and other macros, since
it clearly delineates the macro name.

Cross Reference

Chapter 20, Customizing RPM Behavior covers macros in depth. In your C programs, your code
will likely need to expand the value of macros to place data in the proper directories, determine the
platform architecture, and so on.

15.1.5.3. Expanding Macros in Your Code
You can use rpmExpand to determine the value of system macros from within your C programs.

The rpmExpand function can expand the values of one or more macros, returning the expanded value.
You can pass a variable number of parameters to rpmExpand, and you must terminate the list with a
NULL:

char* rpmExpand (const char *arg,...);

You need to free the data returned by rpmExpand by calling free.

The program in Listing 16-2 takes the first command-line argument to your program (after the program
name) and expands that argument as a macro.

Listing 16-2: rpmexpand.c

Chapter 15. Programming RPM with C

252

/* Show some macro settings. */

#include <stdio.h>

#include <stdlib.h>

#include <rpmlib.h>

#include <rpmmacro.h>

int main(int argc, char * argv[]) {

int status = rpmReadConfigFiles((const char*) NULL,

(const char*) NULL);

if (status != 0) {

printf("Error reading RC files.\n");

exit(-1);

}

char* value = rpmExpand(argv[1], (const char*) NULL);

printf("Value of macro is [%s]\n", value);

exit(0);

}

Compile and link this program as shown previously.

When you run this program, pass the name of a macro to expand. For example:

$./rpmexpand %_target

Value of macro is [i386-linux]

You can pass multiple macros together, as shown following:

$./rpmexpand %_builddir/%_target

Value of macro is [/usr/src/redhat/BUILD/i386-linux]

You can verify this program with the rpm --eval command, introduced previously:

$ rpm --eval %_builddir/%_target

/usr/src/redhat/BUILD/i386-linux

The Power of popt

253

15.2. The Power of popt
Popt provides a powerful command-line processing library, allowing the rpm command to handle a
variety of options in a very flexible way. You can use popt alone as a library in its own right, or use it
combined with the rpm library to handle command-line options like those of the rpm command.

At its most basic, popt processes the command-line arguments to a C program, traditionally called
argc and argv, into an option table that describes and contains all the option values.

The main advantage popt has over simpler libraries such as getopt lies in the ability to handle complex
arguments and to define aliases. The rpm command supports three different behaviors for the –i
option, depending on the context (install a package, get information on a package as part of a query,
and perform the install stage of a source RPM, as part of rpmbuild).

The popt library supports both traditional UNIX short options such as –U and the longer options
common for GNU programs, especially on Linux, such as --upgrade. For the popt library, you can
define both short and long variants for each option. In addition, command-line options may be
individual flags, such as –v for verbose, or options that expect one or more data values as arguments,
such as –f, which requires a file name.

15.2.1. Popt aliases
One of the most powerful features of popt is the ability to define aliases. A popt alias allows you to
define one command-line option as an alias for a set of options. As its simplest, the rpm command-line
options --upgrade and –U refer to the same action. You could define one as an alias for the other.

With rpm, the file /usr/lib/rpm/rpmpopt-4.1 (for RPM version 4.1) defines over 400 lines of popt aliases
to configure the rpm command-line options. For example:

Rpm alias –requires --qf \

"[%{REQUIRENAME} %{REQUIREFLAGS:depflags} %{REQUIREVERSION}\n]" \

--POPTdesc=$"list capabilities required by package(s)"

This example defines rpm --requires as really a query using the --qf or --queryformat options covered
in Chapter 4, Using the RPM Database .

Cross Reference

See Chapter 20, Customizing RPM Behavior for more on defining popt aliases.

15.2.2. Programming with popt
To use popt in your programs, you need to fill in a table of options and then call poptGetContext. The
poptGetContext function parses the command-line options and returns a poptContext, an opaque data
type that you need to pass as a parameter to a number of popt functions. The poptContext holds the
state of your command-line processing. This allows you to call the popt library with multiple sets of
arguments. Each set will have an associate poptContext to keep all the data separate.

The basic poptGetContext function signature follows:

poptContext poptGetContext (const char * name,

int argc,

Chapter 15. Programming RPM with C

254

const char ** argv,

const struct poptOption * options,

int flags);

All the popt functions require the popt.h include file:

#include <popt.h>

The flags should be a bitmask of any options you require, including those listed in Table 16-5.

Table 16-5 Flags for poptGetContext

Flag Meaning

POPT_CONTEXT_NO_EXEC Ignore executable expansions

POPT_CONTEXT_KEEP_FIRST Treat argv[0], the command name, as an option

POPT_CONTEXT_POSIXMEHARDER Do not allow options to follow arguments

When done with a poptContext, you should free it by calling poptFreeContext:

poptContext poptFreeContext(poptContext context);

The call to poptFreeContext frees up the memory allocated for the context.

Note

You can also fill in a poptContext from settings in a file with poptReadConfigFile:

int poptReadConfigFile(poptContext context,

const char * file_name);

15.2.2.1. Filling in the Options Table
You need to pass in a table that defines all the possible options. This table is an array of structures,
where each structure defines one option. The format for a single option follows:

struct poptOption {

const char * longName;

char shortName;

int argInfo;

void * arg;

int val;

const char * descrip;

const char * argDescrip;

};

Programming with popt

255

Going through this structure, the longName defines the long version of the option, such as "upgrade"
for --upgrade. The shortName defines the short, one-character option, such as 'U' for an option of -U.
You can place a null character, '\0', to specify no short option. With the rpm command, the --rebuilddb
option has only a long name and not a short name, for example.

Note

The longName is not preceded by the double minus sign. Similarly, the shortName is not preceded by
the single minus sign.

The descrip field holds a short description of the option and the argDescrip field holds a description of
the types of values it expects, or NULL if this option expects no values.

The argInfo field holds a flag that tells the popt library how to treat the option. At the very least, you
need to define the type of the option. You can also define special processing flags. Table 16-6 lists the
argument types in the options table.

Table 16-6 Popt option table argInfo argument types

Type Value Meaning

POPT_ARG_NONE 0 No argument data, just the
option such as -v

POPT_ARG_STRING 1 arg treated as string

POPT_ARG_INT 2 arg treated as int

POPT_ARG_LONG 3 arg treated as long

POPT_ARG_INCLUDE_TABLE 4 arg points to a table

POPT_ARG_CALLBACK 5 arg points to a callback function

POPT_ARG_INTL_DOMAIN 6 sets translation domain

POPT_ARG_VAL 7 use value of val field for arg

POPT_ARG_FLOAT 8 arg treated as float

POPT_ARG_DOUBLE 9 arg treated as double

Use these constants, from the include file popt.h, in place of the actual numbers.

Depending on the type you define in the argInfo field, popt will interpret the generic pointer field, arg, in
different ways. Using a pointer allows the popt library to automatically update your program variables
based on the command-line option settings.

Note

You can pass NULL for the arg field. In this case, the popt library will not set any values for you.

The POPT_ARG_NONE type indicates that this option has no argument. For example, the -v verbose
option has no data. On the other hand, the POPT_ARG_STRING type indicates that the user should
provide a string. For example, the -f option to the rpm command is expected to include a string
argument, the name of the file to look up.

Note

If the argInfo argument type is POPT_ARG_NONE, the popt library will set arg to 1 if the option is
present on the command line. You should pass a pointer to an int if you want this set for you.

Chapter 15. Programming RPM with C

256

15.2.2.2. Popt Callbacks
The POPT_ARG_CALLBACK type indicates that the arg field holds a function pointer to a callback
function of the following type:

typedef void (*poptCallbackType) (poptContext con,

enum poptCallbackReason reason,

const struct poptOption * opt,

const char * arg,

const void * data);

The callback reason will be one of the following enum values:

enum poptCallbackReason {

POPT_CALLBACK_REASON_PRE = 0,

POPT_CALLBACK_REASON_POST = 1,

POPT_CALLBACK_REASON_OPTION = 2

};

The data field holds the value of the descrip field in the poptOption entry. You can cheat and stuff a
pointer to arbitrary data into this field.

The callback function is most useful if you are using nested option tables. You can place your
processing code for the nested options into a callback.

15.2.2.3. Special Option Table Flags
In addition to the types in Table 16-6, you can also define special bit flags that define extra processing
information for each option. Combine these bit flags with the type values using a logical OR operation:

*The POPT_ARGFLAG_ONEDASH flag allows the longName to be used with one or two dashes,
such as -upgrade or --upgrade.

*For bitmask options, the POPT_ARGFLAG_OR, POPT_ARGFLAG_NOR, POPT_ARGFLAG_AND,
POPT_ARGFLAG_NAND, and POPT_ARGFLAG_XOR type flags tell the popt library to apply the
given operation, OR, NOR, AND, NAND, or XOR, to the value if set. The POPT_ARGFLAG_NOT flag
tells the popt library to negate the value first.

*You can also use the macros POPT_BIT_SET to set a bit and POPT_BIT_CLR to clear a bit.

*The POPT_ARGFLAG_OPTIONAL flag indicates that the argument value is optional.

*The POPT_ARGFLAG_DOC_HIDDEN flag tells popt to hide this option when displaying the help
documentation. In other words, this is an internal option.

*The rarely used POPT_ARGFLAG_STRIP flag tells popt to consume an option and ignore it. This
option is rarely used.

*The POPT_ARGFLAG_SHOW_DEFAULT flag tells popt to show the initial value of the argument for
this option as a default when displaying a help message.

Programming with popt

257

15.2.2.4. Magic Options
With RPM programs, developers usually round out the option table with three special options:
POPT_AUTOALIAS, POPT_AUTOHELP, and POPT_TABLEEND. The POPT_AUTOALIAS option
sets up a table of aliases:

#define POPT_AUTOALIAS { NULL, '\0', POPT_ARG_INCLUDE_TABLE, poptAliasOptions, \

0, "Options implemented via popt alias/exec:", NULL },

This option refers to the table, poptAliasOptions. You can use the POPT_ARG_INCLUDE_TABLE
argInfo type to include another table of options. These options get filled in from popt aliases. In
addition, within RPM programs, another table, rpmcliAllPoptTable, holds a set of options common to all
RPM programs.

The POPT_AUTOHELP option supports standard help options. The POPT_AUTOHELP macro adds in
automatic support for -?, --help, and --usage options.

#define POPT_AUTOHELP { NULL, '\0', POPT_ARG_INCLUDE_TABLE, poptHelpOptions, \

0, "Help options:", NULL },

The POPT_TABLEEND option defines an empty option to mark the end of the table. You must include
an empty option to end the table, and POPT_TABLEEND makes this easy.

#define POPT_TABLEEND { NULL, '\0', 0, 0, 0, NULL, NULL }

Note

The code in Listing 16-3, in the "Running a Popt Example" section later in this chapter, shows a full
option table.

15.2.2.5. Parsing the Command-Line Options
Once you have set up a poptGetContext, you need to iterate over all the command-line parameters. To
do this, call poptGetNextOpt:

int poptGetNextOpt(poptContext context);

If an error occurs, poptGetNextOpt returns a negative error code. If the context is at the end of the
options, poptGetNextOpt returns –1. Table 16-7 lists the error codes:

Table 16-7 Error codes from poptGetNextOpt

Code Meaning

POPT_ERROR_NOARG Option requires an argument, but it is missing

POPT_ERROR_BADOPT Argument could not be parsed

POPT_ERROR_OPTSTOODEEP Aliases are nested too deeply

POPT_ERROR_BADQUOTE Start and end quotation marks don't match

POPT_ERROR_BADNUMBER Argument could not be converted to a number

POPT_ERROR_OVERFLOW Argument number was too big or too small

POPT_ERROR_ERRNO A system call returned an error in errno

Chapter 15. Programming RPM with C

258

15.2.2.6. Walking Through the Command-Line Options
In normal circumstances, poptGetNextOpt parses all the options and returns –1. If your needs are
simple, you can use the pointers to the variables passed in the options table, described previously.
If you need some special processing for options not handled by popt, that is, options of type
POPT_ARG_NONE, then poptGetNextOpt returns the single-character option.

In this case, you can call poptGetNextOpt in a while loop. For example:

while ((option = poptGetNextOpt(context)) {

/* Do something... */

}

Inside your while loop, you can call poptGetOptArg to get the value of the argument:

char * poptGetOptArg(poptContext context);

You can restart the processing of the options by calling poptResetContext:

void poptResetContext(poptContext context);

The popt system is just looking for arguments that start with a dash, -. In most command-line
applications, you may have a number of extra arguments at the end, such as a list of file names. The
popt library doesn’t process these, but can provide them to you.

Call poptGetArg to return the next extra argument:

char * poptGetArg(poptContext context);

Keep calling this function until it returns NULL.

Call poptPeekArg to look at the next argument but not mark it as being processed:

char * poptPeekArg(poptContext context);

Or, you can get the whole list of extra arguments by calling poptGetArgs:

char ** poptGetArgs(poptContext context);

15.2.3. Handling Errors
Inside your while loop processing the command-line arguments, you can call poptBadOption to get the
option that was bad, and poptStrerror to look up the error message associated with the error.

For poptBadOption, you need to pass in the context, and a bitmask of flags. Normally, pass 0 for
no flags or POPT_BADOPTION_NOALIAS, which tells popt to return the actual option, not a value
defined in an alias. This makes poptBadOption return the option closest to, if not exactly the same as,
what the user entered, which makes for better error reporting.

The poptBadOption function signature follows:

char * poptBadOption(poptContext context, int flags);

Pass the error number returned by poptGetOptArg to poptStrerror to get the standard error message
for that option:

Running a popt example

259

const char * poptStrerror(const int error_code);

You can combine these and print out an error with code like the following:

fprintf(stderr, "Error with option [%s]\n %s",

poptBadOption(context, POPT_BADOPTION_NOALIAS),

poptStrerror(error_code);

To print out a usage message, call poptPrintUsage:

void poptPrintUsage(poptContext context,

FILE *output,

int flags);

This function prints out the usage help information, which is a useful function when the user has called
a program with incomplete or wrong options.

15.2.4. Running a popt example
Pulling this all together, you can use the popt1.c program, in Listing 16-3, as an example for using popt
to process command-line options.

Listing 16-3: popt1.c

/* Processes command-line options. */

#include <stdio.h>

#include <stdlib.h>

#include <popt.h>

/* Data values for the options. */

static int intVal = 55;

static int print = 0;

static char* stringVal;

void callback(poptContext context,

enum poptCallbackReason reason,

const struct poptOption * option,

const char * arg,

const void * data)

Chapter 15. Programming RPM with C

260

{

switch(reason)

{

case POPT_CALLBACK_REASON_PRE:

printf("\t Callback in pre setting\n"); break;

case POPT_CALLBACK_REASON_POST:

printf("\t Callback in post setting\n"); break;

case POPT_CALLBACK_REASON_OPTION:

printf("\t Callback in option setting\n"); break;

}

}

/* Set up a table of options. */

static struct poptOption optionsTable[] = {

{ (const) "int", (char) 'i', POPT_ARG_INT, (void*) &intVal, 0,

(const) "follow with an integer value", (const) "2, 4, 8, or 16" },

{ "callback", '\0', POPT_ARG_CALLBACK|POPT_ARGFLAG_DOC_HIDDEN,

&callback, 0, NULL, NULL },

{ (const) "file", (char) 'f', POPT_ARG_STRING, (void*) &stringVal, 0,

(const) "follow with a file name", NULL },

{ (const) "print", (char) 'p', POPT_ARG_NONE, &print, 0,

(const) "send output to the printer", NULL },

POPT_AUTOALIAS

POPT_AUTOHELP

POPT_TABLEEND

};

int main(int argc, char *argv[]) {

Running a popt example

261

poptContext context = poptGetContext(

(const char*) "popt1",

argc,

argv,

(const struct poptOption*) &optionsTable,

0);

int option = poptGetNextOpt(context);

printf("option = %d\n", option);

/* Print out option values. */

printf("After processing, options have values:\n");

printf("\t intVal holds %d\n", intVal);

printf("\t print flag holds %d\n", print);

printf("\t stringVal holds [%s]\n", stringVal);

poptFreeContext(context);

exit(0);

}

This example defines a callback but otherwise uses the simplest case for processing the command-
line options. This program lets the popt library simply set the values into the option table. In most
cases, you should avoid more complex command-line processing.

To compile popt programs, you just need the popt library. For example:

gcc -I/usr/include/rpm -o popt1 popt1.c -lpopt

When you run this program, try out the different options. For example, when you set all the options,
you’ll see output like the following:

$./popt1 -i 42 --print -f filename1

Callback in option setting

Callback in option setting

Callback in post setting

option = -1

Chapter 15. Programming RPM with C

262

After processing, options have values:

intVal holds 42

print flag holds 1

stringVal holds [filename1]

This command used two short options and one long. You can mix and match short and long options,
as shown following:

$./popt1 --int 42 -p --file filename1

Callback in option setting

Callback in option setting

Callback in post setting

option = -1

After processing, options have values:

intVal holds 42

print flag holds 1

stringVal holds [filename1]

This example used a short option for print, -p, and long options for the other two options. The
popt library also provides handy help and usage messages, using the option table macro
POPT_AUTOALIAS. To get a help message, use --help or -?:

$./popt1 --help

Usage: popt1 [OPTION...]

-i, --int=2, 4, 8, or 16 follow with an integer value

-f, --file=STRING follow with a file name

-p, --print send output to the printer

Options implemented via popt alias/exec:

Help options:

-?, --help Show this help message

--usage Display brief usage message

Notice how the help descriptions from the options table are used.

Note

With some shells, especially the tcsh shell, you need to wrap a -? In single quotes. For example:

Handling rpm command-line options

263

$./popt1 '-?'

The usage message is shorter, and you also get it for free:

$./popt1 --usage

Usage: popt1 [-i|--int 2, 4, 8, or 16] [-f|--file STRING] [-p|--print]

[-?|--help] [--usage]

All in all, the popt library provides a handy library for processing command-line options and aliases,
covered in Chapter 20, Customizing RPM Behavior.

15.2.5. Handling rpm command-line options
The RPM C library makes extensive use of popt for processing command-line arguments. Functions
that set up the RPM library, such as rpmcliInit, which sets up the RPM command-line environment,
require a table of poptOption entries that define the command-line options for your program.

To create a simple program that handles the standard rpm command-line options, set up the following
options table:

static struct poptOption optionsTable[] = {

{ NULL, '\0', POPT_ARG_INCLUDE_TABLE, rpmcliAllPoptTable, 0,

"Common options for all rpm modes and executables:",

NULL },

POPT_AUTOALIAS

POPT_AUTOHELP

POPT_TABLEEND

};

Then, initialize your program with a call to rpmcliInit:

poptContext rpmcliInit(int argc, char *const argv[],

struct poptOption * optionsTable);

When you call rpmcliInit, it will set up all the variables for the standard rpm command-line options.

For example, to see if the verbose flag is turned on, call rpmIsVerbose:

int rpmIsVerbose();

When you are done with a program that called rpmcliInit, call rpmcliFini to clean up the global data:

poptContext rpmcliFini(poptContext context);

The call to rpmcliFini returns NULL.

Chapter 15. Programming RPM with C

264

15.3. Working with RPM Files
The RPM C library provides functions to read RPM files as well as query the RPM database. Going
beyond querying, you can perform all the tasks that the rpm and rpmbuild commands do, since both
these commands are written in C using the RPM library. That said, some tasks are much easier than
other tasks. If you are writing a complex package installation program, or a program that keeps various
systems up to date with regards to package versions, you may want to look at the Python RPM API
instead of the C RPM library.

Cross Reference

Chapter 16, Programming RPM with Python covers the Python RPM API.

15.3.1. Opening RPM files
When working with an RPM file from within a program, the first thing you need to do is open the file.
Use Fopen:

FD_t Fopen(const char * path,

const char * fmode);

Fopen works like the standard C function fopen(3).

Note

The reason the RPM library wraps the input/output C library functions is to ensure portability to other
operating systems. This is a fairly common technique.

15.3.2. Reading the RPM lead and signature
Once you have opened an RPM file, you can start to read header information, which is the most
interesting information to most RPM programs. (You may also want to read the files in the RPM
payload, for example.) Before you can start reading the header, though, you must read forward in the
RPM file past the lead and signature.

Cross Reference

Chapter 2, RPM Overview introduces the lead and signature.

Even if your programs don’t want to examine the lead or signature, you must read past to position the
file offset properly for reading the header information. To read past the lead, call readLead:

int readLead(FD_t fd, struct rpmlead *lead);

The readLead function returns 0 on success or 1 on an error. It fills in an rpmlead struct:

struct rpmlead {

unsigned char magic[4];

unsigned char major;

unsigned char minor;

short type;

Reading header information

265

short archnum;

char name[66];

short osnum;

short signature_type;

char reserved[16];

};

To read past the signature, call rpmReadSignature:

rpmRC rpmReadSignature(FD_t fd,

Header * header,

sigType sig_type);

The return code is one of the values listed in Table 16-8.

Table 16-8 Return codes from rpmReadSignature

Code

RPMRC_OK

RPMRC_BADMAGIC

RPMRC_FAIL

RPMRC_BADSIZE

RPMRC_SHORTREAD

You can do more with the signature than merely reading past it, of course. Look in the online RPM
documentation for more on verifying signatures.

After reading the signature, you can start to read the general header entries.

15.3.3. Reading header information
The header information includes the package name, version, pre- and post-installation scripts, and so
on. To read in the RPM header, call headerRead. If successful, headerRead returns a Header object.
You can then read data values from the Header.

Header headerRead(FD_t fd,

enum hMagic magicp);

Note

When working with the RPM database, you will also use Header objects.

The trickiest thing about calling headerRead is that you must pass a special magic number
flag. This value must be HEADER_MAGIC_YES if the header has a set of magic numbers, and
HEADER_MAGIC_NO if not. If you guess incorrectly, headerRead will return an error. To get around,
this, you can compare the major number in the lead. For example:

Chapter 15. Programming RPM with C

266

Header header = headerRead(fd, (lead.major >= 3) ?

HEADER_MAGIC_YES : HEADER_MAGIC_NO);

Note

This snippet is one of the gems you'll find when you browse the RPM source code. Use the source.

To read values from the Header, call headerGetEntry. To call headerGetEntry, you pass in a Header
and a tag ID. You get back the type of the tag, a pointer to the tag values, and a count of the number
of values stored under this tag.

int headerGetEntry(Header header,

int_32 tag,

hTYP_t type,

void **pointer,

hCNT_t data_size);

The call to headerGetEntry returns a 1 on success, or a 0 on failure. On success, the pointer will point
at the retrieved data, with the type parameter set to one of the following enum values:

enum rpmTagType_e {

RPM_NULL_TYPE = 0,

RPM_CHAR_TYPE = 1,

RPM_INT8_TYPE = 2,

RPM_INT16_TYPE = 3,

RPM_INT32_TYPE = 4,

RPM_STRING_TYPE = 6,

RPM_BIN_TYPE = 7,

RPM_STRING_ARRAY_TYPE = 8,

RPM_I18NSTRING_TYPE

}

Note

If the type is RPM_STRING_ARRAY_TYPE or RPM_BIN_TYPE, you must free the pointer. Call
headerFreeData to free the data:

void* headerFreeData(const void *pointer,

rpmTagType type);

You need to pass in the data pointer and the type flag. You can safely call headerFreeData for all
types. The function will do nothing if the type is not set up to require freeing.

Reading header information

267

When you call headerGetEntry, you must identify the tag you want from the header. This tag
is an identifier for the --queryformat tags introduced in Chapter 4, Using the RPM Database .
The file rpmlib.h lists the various tags, such as RPMTAG_NAME, RPMTAG_VERSION, and
RPMTAG_RELEASE.

The following function shows how to read a string entry from a Header:

/* Function to read a string header entry. */

char* readHeaderString(Header header, int_32 tag_id) {

int_32 type;

void* pointer;

int_32 data_size;

int header_status = headerGetEntry(header,

tag_id,

&type,

&pointer,

&data_size);

if (header_status) {

if (type == RPM_STRING_TYPE) {

return pointer;

}

}

return NULL;

}

Pass the Header object and the ID of the tag to read. For example:

char* name = readHeaderString(header, RPMTAG_NAME);

char* version = readHeaderString(header, RPMTAG_VERSION);

char* release = readHeaderString(header, RPMTAG_RELEASE);

To just get the name, version, and release number, you can call the utility function headerNVR, which
has the following function signature:

int headerNVR(Header header,

Chapter 15. Programming RPM with C

268

const char **nameptr,

const char **versionptr,

const char **releaseptr);

When you are through with a header, free it by calling headerFree:

Header headerFree(Header header);

The call to headerFree returns NULL, so you can use the call to set the original pointer to to NULL to
prevent accidental reuse. For example:

header = headerFree(header);

15.3.4. A shortcut to header information
You can read in a Header using the shortcut utility method rpmReadPackageFile:

int rpmReadPackageFile(rpmts ts,

FD_t fd,

const char *filename,

Header *header);

You need to pass a transaction set to rpmReadPackageFile and an open file. The filename is just used
for reporting errors. On success, rpmReadPackageFile fills in a Header object from the package file.
The return value is 0 for success.

To get the necessary transaction set, you need to create one with rpmtsCreate, covered in the
"Programming with the RPM Database" section, following.

Note

In most cases, you should call rpmReadPackageFile in place of readLead, rpmReadSignature, and
headerRead, since rpmReadPackageFile also verifies the package integrity.

15.3.5. Closing RPM files
When you’re done with an RPM file, close it with Fclose:

int Fclose(FD_t fd);

Fclose acts much like the standard C function fclose(3). The FD_t is an RPM data type that is very
similar to a FILE pointer.

The RPM I/O subsystem, defined with rpmio.h, includes functions that mimic (and in most cases wrap)
the ANSI C stdio functions. These include: Fopen, Fclose, Fread, Fwrite, Ferror, Fflush, Fileno, and
Fseek.

These functions wrap the ANSI C stdio functions to add new features. The Fopen function, for
example, supports HTTP or FTP URLs in the place of a file name, so long as you append ".ufdio" to
the mode.

Programming with the RPM Database

269

15.4. Programming with the RPM Database
Many functions in rpmlib require a transaction set. In particular, accessing the rpm database is quite
easy using a transaction set.

Create a transaction set by calling rpmtsCreate:

rpmts rpmtsCreate(void);

RPM uses transaction sets to bracket operations on the RPM database. As the RPM API evolves,
transaction sets will become more and more important. Transaction sets also help in that the RPM
library will automatically open the RPM database as needed.

When you are done with a transaction set, call rpmtsFree:

rpmts rpmtsFree(rpmts ts);

The call to rpmtsFree returns NULL.

15.4.1. Database iterators
Once you have a transaction set, you can iterate over the installed packages in the RPM database by
creating an iterator. To do this, call rpmtsInitIterator:

rpmdbMatchIterator rpmtsInitIterator(const rpmts ts,

rpmTag rpmtag,

const void *keypointer,

size_t keylen);

You need to specify which tag to iterate by, which in most cases will be the package name,
RPMTAG_NAME, introduced previously With the RPMTAG_NAME tag, you need to pass the name of
a package to look for in the keypointer parameter. (The keypointer varies based on the tag you pass.)

For string data, you can pass 0 for the keylen parameter. For example, this call to rpmtsInitIterator
looks for all packages named sendmail.

rpmdbMatchIterator iter;

iter = rpmtsInitIterator(ts, RPMTAG_NAME, "sendmail", 0);

The rpmdbMatchIterator allows you to iterate through a number of packages, in this case, all
the packages that match a given name. After calling rpmtsInitIterator, the next step is to call
rpmdbNextIterator:

Header rpmdbNextIterator(rpmdbMatchIterator iter);

This function returns the next package Header object in the iterator. The Header will be NULL if there
are no more packages in the iterator.

If the Header is not NULL, you can get entries from it, as shown previously. You can use a while loop
to go through all the matching packages. For example:

while ((installed_header = rpmdbNextIterator(iter)) != NULL) {

Chapter 15. Programming RPM with C

270

/* Do something... */

}

Note

In future versions of the RPM library, rpmtsNextIterator, will replace rpmdbNextIterator.

You do not need to free the Header returned by rpmdbNextIterator. Also, the next call to
rpmdbNextIterator will reset the Header.

You can customize how an iterator works by adding a pattern to the iterator with rpmdbSetIteratorRE:

int rpmdbSetIteratorRE(rpmdbMatchIterator iter,

rpmTag tag,

rpmMireMode mode,

const char * pattern);

Calling rpmdbSetIteratorRE modifies the passed-in iterator to use the given pattern as a further test on
the given tag. The mode parameter names the type of pattern used, which can be one of those listed
in Table 16-9.

Table 16-9 Types of patterns for rpmdbSetIteratorRE

Type Meaning

RPMMIRE_DEFAULT Same as regular expressions but with \., .*, and
^..$ added.

RPMMIRE_GLOB Glob-style patterns using fnmatch.

RPMMIRE_REGEX Regular expressions using regcomp.

RPMMIRE_STRCMP String comparisons using strcmp.

Cross Reference

For more on these patterns, see the online manual pages for fnmatch(3), glob(7), regcomp(3),
regex(7), and strcmp(3).

Free the iterator when done with rpmdbFreeIterator:

rpmdbMatchIterator rpmdbFreeIterator(rpmdbMatchIterator iter);

The call to rpmdbFreeIterator returns NULL.

15.4.2. Dependency Sets
To compare package versions, create a dependency set. The rpm command, for example, uses
dependency sets to compare package versions.

Note

You could compare the version numbers directly, calling headerGetEntry to get the version and
release tags, converting these strings to numbers and then comparing, but this would cause problems.
The custom comparison is not as exact as the code in this section, especially since many packages

Dependency Sets

271

have version numbers that are not true numbers, such as 1.12.4, with one too many decimal points.
This makes the comparisons harder. In addition, there is more than just the version number to take
into account. You need to deal with the Epoch value, as well as the release, too.

To handle all the complicated logic of comparing versions, you can use the code in this section, or call
rpmvercmp. Do not try to compare version numbers with custom code.

To create a dependency set for a given package Header, call rpmdsThis. Calling rpmdsThis creates a
dependency set that holds a triple of the package name, the Epoch/Version/Release information, and
the flags.

rpmds rpmdsThis(Header header,

rpmTag tagID,

int_32 Flags);

For comparing packages, you can pass RPMTAG_REQUIRENAME for the tagID. The actual tagID
here is ignored for the version check. What you do need, though, are flags to check whether another
package is less than or equal to the Epoch/Version/Release information in this dependency set. For
this task, pass the following bit flags:

(RPMSENSE_EQUAL|RPMSENSE_LESS)

Once you have a dependency set, you can use the handy function rpmdsNVRMatchesDep to compare
the NVR, or Name, Version, Release entries in the header of one package against the data in the
dependency set.

int rpmdsNVRMatchesDep(const Header header,

const rpmds dependency_set,

int nopromote);

After checking the dependencies, rpmdsNVRMatchesDep returns 1 if the dependency overlaps, or
0 otherwise. In terms of comparing packages, 1 means that the package file is as old or older than
the installed package, and 0 means that the package already installed is newer. Pass 1 to prevent
promoting the Epoch value in the packages during the comparison.

The actual comparison is controlled by the call that creates the dependency set, especially the flags.
Thus, passing flags of (RPMSENSE_EQUAL|RPMSENSE_LESS) to rpmdsThis set up the test as a
less than or equal test.

Note

The RPM C API documentation marks rpmdsNVRMatchesDep as deprecated, to be replaced in the
future.

You can also call rpmVersionCompare to compare the versions of two packages:

int rpmVersionCompare(Header header1, Header header2);

The return value is -1 if the header1 represents an older version than header2, 0 if the two headers
represent the same version, and 1 if header1 represents a newer version than header2.

To get the name of the package from a dependency set, call rpmdsN:

Chapter 15. Programming RPM with C

272

const char* rpmdsN(const rpmds dependency_set);

You can use rpmdsN to get the name when calling rpmtsInitIterator if you are working with
dependency sets when searching the RPM database.

Free a dependency set when done by calling rpmdsFree:

rpmds rpmdsFree(rpmds dependency_set);

As with other free functions, rpmdsFree returns NULL.

15.5. Comparing an RPM File to an Installed Package
You can pull together the RPM file and database discussions, shown previously, to create a number of
RPM programs. A useful utility that shows the RPM C library compares a package file against installed
packages, reporting whether the package in the RPM file represents a newer or older package than
what was already installed.

Listing 16-4 shows such a program.

Listing 16-4: vercompare.c

/* Compares a package file with an installed package,

telling which one is newer.

Usage:

vercompare pkg_files+

Compile as

cc -I/usr/include/rpm -o vercompare vercompare.c -lrpm -lrpmdb -lrpmio -lpopt

*/

#include <stdlib.h>

#include <rpmcli.h>

#include <rpmdb.h>

#include <rpmds.h>

#include <rpmts.h>

/* Set up a table of options using standard RPM options. */

static struct poptOption optionsTable[] = {

{ NULL, '\0', POPT_ARG_INCLUDE_TABLE, rpmcliAllPoptTable, 0,

Comparing an RPM File to an Installed Package

273

"Common options for all rpm modes and executables:",

NULL },

POPT_AUTOALIAS

POPT_AUTOHELP

POPT_TABLEEND

};

int main(int argc, char * argv[])

{

poptContext context;

const char ** fnp;

rpmdbMatchIterator iter;

Header file_header, installed_header;

rpmts ts;

rpmds dependency_set;

FD_t fd;

rpmRC rpmrc;

int rc;

context = rpmcliInit(argc, argv, optionsTable);

if (context == NULL) {

exit(EXIT_FAILURE);

}

ts = rpmtsCreate();

for (fnp = poptGetArgs(context); fnp && *fnp; fnp++) {

/* Read package header, continuing to next arg on failure. */

fd = Fopen(*fnp, "r.ufdio");

if (fd == NULL || Ferror(fd)) {

Chapter 15. Programming RPM with C

274

rpmError(RPMERR_OPEN, "open of %s failed: %s\n", *fnp,

Fstrerror(fd));

if (fd) {

Fclose(fd);

}

continue;

}

rpmrc = rpmReadPackageFile(ts, fd, *fnp, &file_header);

Fclose(fd);

if (rpmrc != RPMRC_OK) {

rpmError(RPMERR_OPEN, "%s cannot be read\n", *fnp);

continue;

}

/* Generate "name <= epoch:version-release" depset for package */

dependency_set = rpmdsThis(file_header, RPMTAG_REQUIRENAME,

(RPMSENSE_EQUAL|RPMSENSE_LESS));

rc = -1; /* assume no package is installed. */

/* Search all installed packages with same name. */

iter = rpmtsInitIterator(ts, RPMTAG_NAME, rpmdsN(dependency_set), 0);

while ((installed_header = rpmdbNextIterator(iter)) != NULL) {

/* Is the installed package newer than the file? */

rc = rpmdsNVRMatchesDep(installed_header, dependency_set, 1);

switch (rc) {

case 1:

if (rpmIsVerbose())

fprintf(stderr, "installed package is older (or same) as %s\n",

Comparing an RPM File to an Installed Package

275

*fnp);

break;

case 0:

if (rpmIsVerbose())

fprintf(stderr, "installed package is newer than %s\n",

*fnp);

break;

}

}

/* Clean up. */

iter = rpmdbFreeIterator(iter);

dependency_set = rpmdsFree(dependency_set);

if (rc < 0 && rpmIsVerbose())

fprintf(stderr, "no package is installed %s\n", *fnp);

}

ts = rpmtsFree(ts);

context = rpmcliFini(context);

return rc;

}

The vercompare.c program shows reading in RPM package files as well as querying the RPM
database. It introduces transaction sets, used extensively in the RPM API, and also dependency sets.
You can use this program as a guide for making your own RPM programs.

When you run the vercompare.c program, pass the names of one or more RPM files. The
vercompare.c program will extract the package name from the files, and then query the RPM database
for matching packages. For each matching package, vercompare.c checks whether the installed
package is newer than the RPM file, or at the same version or older. For example, if you have installed
version 1.17-1 of the jikes package (a Java compiler), you can compare the installed version against
RPM files. If you have a package that has a newer version, you should see output like the following:

$./vercompare -v jikes-1.18-1.i386.rpm

installed package is older (or same) as jikes-1.18-1.i386.rpm

Chapter 15. Programming RPM with C

276

Note that the output is relative to the installed package.

If you compare against a file that has an older version of the package, you will see results like the
following:

$./vercompare -v jikes-1.14-1-glibc-2.2.i386.rpm

installed package is newer than jikes-1.14-1-glibc-2.2.i386.rpm

And, if you compare to an RPM file that holds the same package, you will see output as follows:

$./vercompare -v jikes-1.17-glibc2.2-1.i386.rpm

installed package is older (or same) as jikes-1.17-glibc2.2-1.i386.rpm

You can change this aspect of the test by changing the flags passed to rpmdsThis.

Note

The vercompare.c program prints out nothing unless there is an error. Instead, it sets the program
exit status based on the package version comparison. You can use this with automated tools, such as
make, that check the exit status.

If you want output from the program, pass the –v, verbose, option to the command, as shown in the
previous examples.

The RPM cli or command-line interface functions, such as rpmcliInit, are based on the command-
line options expected by the rpm and rpmbuild commands. You can use these functions to provide a
high level of abstraction onto the RPM system. For example, to run the query options just like the rpm
command, call rpmcliQuery.

int rpmcliQuery(rpmts transaction_set,

QVA_t qva,

const char **argv);

Set the QVA_t variable to point at the global variable rpmQVKArgs, which is set up from the global
option table for the query mode, rpmQueryPoptTable. Pass rpmcliQuery a set of file names or package
names. You can get these names in the given format by calling poptGetArgs, introduced previously.

To support the query options, you need the rpm query entries in your poptOption table. To get these
options, add the following entry:

{ NULL, '\0', POPT_ARG_INCLUDE_TABLE, rpmQueryPoptTable, 0,

"Query options (with -q or --query):",

NULL },

With the rpmQueryPoptTable options, you can make a program that works like the rpm --query
command using just the following code:

poptContext context;

QVA_t qva = &rpmQVKArgs;

Comparing an RPM File to an Installed Package

277

rpmts ts;

int ec;

context = rpmcliInit(argc, argv, optionsTable);

if (context == NULL) {

/* Display error and exit... */

}

ts = rpmtsCreate();

if (qva->qva_mode == 'q') {

/* Make sure there's something to do. */

if (qva->qva_source != RPMQV_ALL && !poptPeekArg(context)) {

fprintf(stderr, "no arguments given for --query");

exit(EXIT_FAILURE);

}

ec = rpmcliQuery(ts, qva, (const char **) poptGetArgs(context));

}

ts = rpmtsFree(ts);

context = rpmcliFini(context);

This code supports all the query options just like the rpm command. That's both good and bad. If you
wanted everything exactly like the rpm command, chances are you could use the rpm command as is.
But if you need to add RPM query support into your programs, this is probably the easiest way to do it.

With a small additional set of code, you can add support for all the --verify options to your program.
You need to include the --verify command-line option definitions, which come from the global
rpmVerifyPoptTable table:

/* Add in --verify options. */

{ NULL, '\0', POPT_ARG_INCLUDE_TABLE, rpmVerifyPoptTable, 0,

"Verify options (with -V or --verify):",

NULL },

You can then check for the verify mode, and support the options, with code like the following:

Chapter 15. Programming RPM with C

278

if (qva->qva_mode == 'V') {

rpmVerifyFlags verifyFlags = VERIFY_ALL;

/* Verify flags are negated from query flags. */

verifyFlags &= ~qva->qva_flags;

qva->qva_flags = (rpmQueryFlags) verifyFlags;

/* Make sure there's something to do. */

if (qva->qva_source != RPMQV_ALL && !poptPeekArg(context)) {

fprintf(stderr, "no arguments given for --verify");

exit(EXIT_FAILURE);

}

ec = rpmcliVerify(ts, qva, (const char **)

poptGetArgs(context));

}

The workhorse function in this code is rpmcliVerify, a high-level function that performs all the --verify
work done by the rpm command.

int rpmcliVerify(rpmts transaction_set,

QVA_t qva,

const char **argv);

Again, set the QVA_t variable to point at the global variable rpmQVKArgs, which is set up from the
global option table for the query mode, rpmQueryPoptTable.

Putting this all together, Listing 16-5 shows a program that performs the same as the rpm command
for the --query and --verify options.

Listing 16-5: rpmq.c

/*

rpm --query and --verify modes in standalone program.

Compile as

cc -I/usr/include/rpm -o rpmq rpmq.c -lrpm -lrpmdb -lrpmio -lpopt

See option usage by invoking

./rpmq --help

Comparing an RPM File to an Installed Package

279

*/

#include <stdlib.h>

#include <rpmcli.h>

#include <rpmdb.h>

#include <rpmds.h>

#include <rpmts.h>

/* Set up a table of options. */

static struct poptOption optionsTable[] = {

{ NULL, '\0', POPT_ARG_INCLUDE_TABLE, rpmcliAllPoptTable, 0,

"Common options for all rpm modes and executables:",

NULL },

{ NULL, '\0', POPT_ARG_INCLUDE_TABLE, rpmQueryPoptTable, 0,

"Query options (with -q or --query):",

NULL },

/* Add in --verify options. */

{ NULL, '\0', POPT_ARG_INCLUDE_TABLE, rpmVerifyPoptTable, 0,

"Verify options (with -V or --verify):",

NULL },

POPT_AUTOALIAS

POPT_AUTOHELP

POPT_TABLEEND

};

int main(int argc, char * argv[])

{

poptContext context;

QVA_t qva = &rpmQVKArgs;

Chapter 15. Programming RPM with C

280

rpmts ts;

int ec;

context = rpmcliInit(argc, argv, optionsTable);

if (context == NULL) {

poptPrintUsage(context, stderr, 0);

exit(EXIT_FAILURE);

}

ts = rpmtsCreate();

/* Check for query mode. */

if (qva->qva_mode == 'q') {

/* Make sure there's something to do. */

if (qva->qva_source != RPMQV_ALL && !poptPeekArg(context)) {

fprintf(stderr, "no arguments given for --query");

exit(EXIT_FAILURE);

}

ec = rpmcliQuery(ts, qva, (const char **) poptGetArgs(context));

}

/* Check for verify mode. */

else if (qva->qva_mode == 'V') {

rpmVerifyFlags verifyFlags = VERIFY_ALL;

/* Verify flags are negated from query flags. */

verifyFlags &= ~qva->qva_flags;

qva->qva_flags = (rpmQueryFlags) verifyFlags;

/* Make sure there's something to do. */

if (qva->qva_source != RPMQV_ALL && !poptPeekArg(context)) {

fprintf(stderr, "no arguments given for --verify");

exit(EXIT_FAILURE);

Where to Go from Here

281

}

ec = rpmcliVerify(ts, qva, (const char **) poptGetArgs(context));

}

else {

poptPrintUsage(context, stderr, 0);

exit(EXIT_FAILURE);

}

ts = rpmtsFree(ts);

context = rpmcliFini(context);

return ec;

}

There is not a lot of code in rpmq.c, as this program is mostly calling the high-level functions for the
rpm command-line interface.

When you run the rpmq program, it performs the same tasks as the rpm command with the --query (or
-q) and --verify (or -V) command-line options.

For example, rpmq supports query formats:

$./rpmq -q --qf "%{NAME} %{INSTALLTID:date}\n" jikes

jikes Fri 25 Oct 2002 06:49:38 PM CDT

15.6. Where to Go from Here
There is a lot more you can do with the RPM library; you're limited only by your imagination. The best
way to get started is to follow the examples in this chapter and then try out some RPM programs on
your own. After working with the RPM library for a while, you can delve into other RPM topics.

The RPM Web site, at www.rpm.org, has most of the available documentation on the RPM system.
This site also includes official RPM released software.

One of the best ways to help find out about how to perform RPM tasks is to look at the source code for
the rpm program itself. For this, download the rpm-src source RPM, too. To see the rpm command-line
interface functions in action, look especially at tools/rpmcache.c and tools/rpmgraph.c, two relatively
short RPM files that show how to take advantage of a number of short cuts. The source code for the
Python and Perl bindings can also provide extra hints about the purposes of the RPM API calls.

The RPM Web site also has a cross-referenced set of HTML pages on the RPM programming API.
The pages for version 4.1 of RPM are available at www.rpm.org/rpmapi-4.1/. A good starting page is
www.rpm.org/rpmapi-4.1/modules.html, which lists a number of modules within the overall RPM library.
This extra level of organization can help you locate the functions you need.

Chapter 15. Programming RPM with C

282

15.7. Summary
Everything you can do with RPM you can program in C. That’s because the source code for the entire
RPM system is available. In addition, the rpm and rpmbuild programs make use of a published API,
called rpmlib, to access RPM functionality. You can use this library yourself.

The popt library, short for parse options, provides a lot of handy utilities for parsing very complex
command-line options. You can use popt inside your own programs, even if you don’t use the rest of
the RPM functionality.

Most RPM programs start up by calling rpmcliInit, which sets up RPM variables for the large set of
command-line options supported by most RPM commands.

Call rpmReadPackageFile to read in the Header object from a package file. You can also get Header
objects for the packages installed in a system by initializing an iterator to iterate over a set of packages
that meet a certain criteria.

This chapter covers a fairly low level of access to RPM functionality. The next chapter, on Python
programming, shows a higher level of abstraction for working with RPM.

Chapter 16.

283

Programming RPM with Python
This chapter covers:

• Using the RPM with Python

• Installing the necessary modules

• Programming with the RPM database

• Programming with RPM files

• Installing packages programmatically

16.1. Setting Up a Python Development Environment
Setting up a Python development environment is much the same as setting up a C programming
environment. You need to install a set of packages for general Python development, install a package
that provides the Python API to the RPM system, and choose a program for editing your Python
scripts.

Cross Reference

Chapter 26, Linux Text Editors and Development Tools covers Linux text editors and development
tools.

If you want to make a graphical user interface in your Python programs, you need to install a separate
Python package.

16.1.1. Installing the base Python packages
The base Python package needed for developing applications is python. For RPM usage, you should
install Python 2.2, not Python 1.5. That’s because the RPM bindings for Python are moving to support
only 2.2 and higher releases.

The Python package for RPM access is rpm-python. Install these as you would any other packages.

Cross Reference

Chapter 3, Using RPM covers installing packages.

16.1.2. Using Python for graphics
Python supports a number of different toolkits for creating graphical user interfaces. You need one of
these toolkits if you want to create Python applications that sport a user interface instead of command-
line tools. Among the most popular toolkits are PyGKT, PyQt, and Tkinter.

*PyGTK is a binding between Python and the GTK+ toolkit used by the GNOME desktop, one of two
main desktop environments for Linux. (KDE is the other main desktop environment.) The Red Hat
redhat-config-packages program uses PyGTK and sports a very good-looking user interface.

PyGTK provides full access to the GTK+ widgets such as menus, dialog windows, and buttons. Install
the pygtk2 module for PyGTK. For more on PyGTK, see www.daa.com.au/~james/pygtk/.

Chapter 16. Programming RPM with Python

284

*PyQt connects Python scripts to the Qt C++ user interface toolkit. Qt forms the base library used by
the KDE desktop environment and KDE applications. As with PyGTK, PyQt allows you to access the
rich widget set provided by the library.

Install the PyQt package for PyQt. For more on PyQt, see www.riverbankcomputing.co.uk/pyqt/.

*Tkinter is considered a standard part of Python and is based on the Tk (pronounced teekay) toolkit
from the Tcl scripting language. The main advantages of Tkinter are that it is considered part of
Python, meaning users are more likely to have it, and Tkinter works on multiple platforms, including
Windows.

The main drawback of Tkinter is that the widget sets are not as rich as PyQt or PyGTK. For more on
Tkinter, see www.python.org/topics/tkinter/.

After you’ve set up your environment and installed all the necessary packages, the next step is to start
working with the Python API for RPM.

16.2. The Python API Hierarchy
The RPM Python API provides a high-level abstraction into RPM functionality divided into logical
areas. Table 17-1 lists the main RPM types. In most cases, you need to begin with rpm and create a
transaction set.

Table 17-1 Python types for RPM usage

Class Covers

rpm RPM base module into RPM API

rpmts Transaction sets

rpmte Transaction elements, a package in a transaction
set

rpmmi Match iterators, used for querying the RPM
database

Rpmds Dependency set

Rpmfi File into set

Header A package header

In general, the RPM Python API is well-integrated into the standard Python API. For example, you use
the Python os class to read in RPM package files.

Note

The examples in this chapter use the RPM 4.1 Python API. The API in previous versions is
significantly different from the 4.1 version.

16.3. Programming with the RPM Database
Compared to the RPM C API, discussed in Chapter 15, Programming RPM with C , the Python API is
much simpler and requires many fewer programming statements to get your job done.

Just about every Python RPM script needs a transaction set. Create a transaction set with
rpm.TransactionSet:

Accessing the RPM database

285

import rpm

ts = rpm.TransactionSet()

The transaction set will automatically open the RPM database if needed.

Note

The code examples in this chapter follow the Red Hat conventions for naming variables, such as ts
for a transaction set. This is to make it easier to read the Python examples in the RPM sources, along
with Red Hat installer programs written in Python.

You will need a transaction set in just about every Python script that accesses RPM functionality.

16.3.1. Accessing the RPM database
Transaction sets provide a number of methods for working with the RPM database at the database
level. Use these methods if you need to interact with the database as a whole, as opposed to
accessing individual packages in the database. For example, you can initialize or rebuild the RPM
database with these methods. You can also use a handy trick for accessing another RPM database
instead of the default system database.

16.3.1.1. Setting the Database Location
A transaction set will open the RPM database assuming the default location. To specify a different
RPM database location, call addMacro, as shown following:

rpm.addMacro("_dbpath", path_to_rpm_database)

You can work with more than one RPM database by setting the _dbpath macro, creating a transaction
set, and then removing the macro. After doing this, you can create another transaction set for the
default RPM database, allowing your script to work with more than one database. For example:

Open the rpmdb-redhat database

rpm.addMacro("_dbpath", "/usr/lib/rpmdb/i386-redhat-linux/redhat")

solvets = rpm.TransactionSet()

solvets.openDB()

rpm.delMacro("_dbpath")

Open default database

ts = rpm.TransactionSet()

This example uses the rpmdb-redhat package, which holds a database of all Red Hat Linux packages.
The explicit call to openDB opens the RPM database. In most Python scripts, though, you do not want
to call openDB. Instead, a transaction set will open the database as needed.

The call to delMacro removes the _dbpath macro, allowing the next call to TransactionSet to use the
default RPM database.

Note

Chapter 16. Programming RPM with Python

286

Do not call closeDB on a transaction set. This method does indeed close the RPM database, but it
also disables the ability to automatically open the RPM database as needed.

16.3.1.2. Initializing, Rebuilding, and Verifying the Database
The transaction set provides an initDB method to initialize a new RPM database. This acts like the rpm
--initdb command.

ts.initDB()

The rebuildDB method regenerates the RPM database indices, like the rpm --rebuilddb command:

ts.rebuildDB()

The rebuildDB method regenerates the RPM database indices, like the rpm --rebuilddb command.

The verifyDB method checks that the RPM database and indices are readable by the Berkeley DB
library:

ts.verifyDB()

Calling this method is the same as running the db_verify command on each of the database files in /
var/lib/rpm.

Cross Reference

See Chapter 4, Using the RPM Database for more on initializing, rebuilding, and verifying RPM
databases.

Once you have a transaction set, you can start querying the RPM database.

16.3.2. Querying the RPM database
Call dbMatch on a transaction set to create a match iterator. As with the C API, a match iterator allows
your code to iterate over the packages that match a given criteria.

A call to dbMatch with no parameters means to set up a match iterator to go over the entire set of
installed packages. The basic format follows:

import rpm

ts = rpm.TransactionSet()

mi = ts.dbMatch()

for h in mi:

Do something with header object...

In this example, the call to dbMatch returns a match iterator. The for loop iterates over the match
iterator, returning one header each time.

In addition to this syntax, you can call next on the match iterator to get the next entry, a header object
that represents one package. For example:

Querying the RPM database

287

import rpm

ts = rpm.TransactionSet()

mi = ts.dbMatch()

while mi:

h = mi.next()

Do something with the header object

The explicit call to next on the match iterator will likely no longer be supported in a future version of
the RPM Python API, since the PEP-234 (Python Enhancement Proposal) calls for one means or the
other for iterating, but not both.

For example, Listing 17-1 shows a Python script to print out the name, version, and release
information for all installed packages.

Listing 17-1: rpmqa.py

#!/usr/bin/python

Acts like rpm -qa and lists the names of all the installed packages.

Usage:

python rpmqa.py

import rpm

ts = rpm.TransactionSet()

mi = ts.dbMatch()

for h in mi:

print "%s-%s-%s" % (h['name'], h['version'], h['release'])

When you call this script, you should see output like the following, truncated for space:

$ python rpmqa.py

libbonoboui-2.0.1-2

attr-2.0.8-3

dhclient-3.0pl1-9

file-3.37-8

hdparm-5.2-1

Chapter 16. Programming RPM with Python

288

ksymoops-2.4.5-1

imlib-1.9.13-9

logwatch-2.6-8

mtr-0.49-7

openssh-clients-3.4p1-2

pax-3.0-4

python-optik-1.3-2

dump-0.4b28-4

sendmail-8.12.5-7

sudo-1.6.6-1

mkbootdisk-1.4.8-1

telnet-0.17-23

usbutils-0.9-7

wvdial-1.53-7

docbook-dtds-1.0-14

urw-fonts-2.0-26

db4-utils-4.0.14-14

libogg-devel-1.0-1

Note

If you set the execute permission on this script, you can skip the explicit call to the python command.
For example:

$./rpmqa.pyr

16.3.3. Examining the package header
The code in Listing 17-1 introduces the package header object, an object of the hdr class. This
represents a package header, and contains entries such as the name, version, pre- and post-
installation scripts, and triggers.

16.3.3.1. The hdr Class
You can access each entry in the header using Python's dictionary syntax. This is much more
convenient than calling headerGetEntry in C programs. The basic syntax to access header entries
follows:

value = h['tag_name']

Examining the package header

289

For example, to get the package name, use the following code:

name = h['name']

You can also use a set of predefined RPMTAG_ constants that match the C API. These constants are
defined in the rpm module. For example:

name = h[rpm.RPMTAG_NAME]

Note

Using the rpm constants such as rpm.RPMTAG_NAME is faster than using the strings such as 'name'.

For header entries that hold an array of strings, such as the list of files in the package, the data
returned is a Python list. For example:

print "Files:"

files = h['FILENAMES']

for name in files:

print name

You can use file info sets to achieve more compact code. For example:

print "Files:"

fi = h.fiFromHeader()

print fi

The requires, provides, obsoletes, and conflicts information each appear as three separate but related
lists for each set of information, with three lists for the requires information, three for the provides
information, and so on. You can extract this information using Python dependency sets using the
simple code following:

print h.dsFromHeader('providename')

print h.dsFromHeader('requirename')

print h.dsFromHeader('obsoletename')

print h.dsFromHeader('conflictname')

Cross Reference

The rpminfo.py script in Listing 17-3 shows how to print out this information.

16.3.3.2. Printing Header Information with sprintf
In addition to using the Python dictionary syntax, you can use the sprintf method on a header to format
data using a syntax exactly the same as the query format tags supported by the rpm command.

Cross Reference

Chapter 4, Using the RPM Database covers query formats.

Chapter 16. Programming RPM with Python

290

The basic syntax is as follows:

h.sprintf("%{tag_name}")

You can also use special formatting additions to the tag name. For example:

print "Header signature: ", h.sprintf("%{DSAHEADER:pgpsig}")

print "%-20s: %s" % ('Installed on', h.sprintf("%{INSTALLTID:date}"))

You can combine this information into functions that print out header entries with specific formatting.
For example:

def nvr(h):

return h.sprintf("%{NAME}-%{VERSION}-%{RELEASE}")

Note that you only really need to use sprintf when you need the format modifiers, such as date on
%{INSTALLTID:date}. In most other cases, Python’s string-handling functions will work better.

16.3.4. Querying for specific packages
When you call dbMatch on a transaction set object, passing no parameters means to iterate over the
entire set of installed packages in the RPM database. You can also query for specific packages using
dbMatch. To do so, you need to pass the name of a tag in the header, as well as the value for that tag
that you are looking for. The basic syntax follows:

mi = ts.dbMatch(tag_name, value)

For example, to query for all packages named sendmail, use code like the following:

mi = ts.dbMatch('name', 'sendmail')

The call to dbMatch returns an rpmdbMatchIterator. You can query on any of the tags in the header,
but by far the most common query is by name.

Note

Some matches are fast and some are much slower. If you try to match on a tag that is indexed in
the RPM database, the matches will perform much faster than for those tags that are not indexes.
To determine which tags are indexed, look at the files in /var/lib/rpm. For example, Name and
Requirename are files in /var/lib/rpm. These tags are indexed and will therefore match quickly.

Listing 17-2 shows an example Python script which queries for a particular package name and then
prints out the name, version, and release for all matching packages.

Listing 17-2: rpmq.py

#!/usr/bin/python

Acts like rpm -q and lists the N-V-R for installed

packages that match a given name.

Usage:

Printing information on packages

291

python rpmq.py package_name

import rpm, sys

ts = rpm.TransactionSet()

mi = ts.dbMatch('name', sys.argv[1])

for h in mi:

print "%s-%s-%s" % (h['name'], h['version'], h['release'])

When you call this script, you need to pass the name of a package to query, which the python
interpreter will store in sys,argv[1] in the call to dbMatch. For example:

$ python rpmq.py sendmail

sendmail-8.12.5-7

16.3.5. Printing information on packages
You can create the equivalent of the rpm –qi command with a small number of Python commands.
Listing 17-3 shows an example. This script queries for a particular package name, as shown
previously in Listing 17-2. Once a package is found, though, rpminfo.py prints out a lot more
information, similar to the output from the rpm –qi command.

Listing 17-3: rpminfo.py

#!/usr/bin/python

Lists information on installed package listed on command line.

Usage:

python rpminfo.py package_name

import rpm, sys

def printEntry(header, label, format, extra):

value = header.sprintf(format).strip()

print "%-20s: %s %s" % (label, value, extra)

def printHeader(h):

if h[rpm.RPMTAG_SOURCEPACKAGE]:

Chapter 16. Programming RPM with Python

292

extra = " source package"

else:

extra = " binary package"

printEntry(h, 'Package', "%{NAME}-%{VERSION}-%{RELEASE}", extra)

printEntry(h, 'Group', "%{GROUP}", '')

printEntry(h, 'Summary', "%{Summary}", '')

printEntry(h, 'Arch-OS-Platform', "%{ARCH}-%{OS}-%{PLATFORM}", '')

printEntry(h, 'Vendor', "%{Vendor}", '')

printEntry(h, 'URL', "%{URL}", '')

printEntry(h, 'Size', "%{Size}", '')

printEntry(h, 'Installed on', "%{INSTALLTID:date}", '')

print h['description']

print "Files:"

fi = h.fiFromHeader()

print fi

Dependencies

print "Provides:"

print h.dsFromHeader('providename')

print "Requires:"

print h.dsFromHeader('requirename')

if h.dsFromHeader('obsoletename'):

print "Obsoletes:"

print h.dsFromHeader('obsoletename')

if h.dsFromHeader('conflictname'):

print "Conflicts:"

print h.dsFromHeader('conflictname')

Printing information on packages

293

ts = rpm.TransactionSet()

mi = ts.dbMatch('name', sys.argv[1])

for h in mi:

printHeader(h)

Note

You should be able to simplify this script. The extensive use of the sprintf method is for illustration
more than efficiency. You generally only need to call sprintf when you need a format modifier for a tag.
In the rpminfo.py script, sprintf was also used to ensure that all entries are text, which allows for calling
strip.

The printEntry function takes in a header sprintf tag value in the format of "%{NAME}". You can also
pass in more complex values with multiple header entries, such as "%{NAME}-%{VERSION}".

When you run this script, you need to pass the name of a package. You'll see output like the following:

$ python rpminfo.py jikes

Package : jikes-1.18-1 binary package

Group : Development/Languages

Summary : java source to bytecode compiler

Arch-OS-Platform : i386-Linux-(none)

Vendor : (none)

URL : http://ibm.com/developerworks/opensource/jikes

Size : 2853672

Installed on : Mon Dec 2 20:10:13 2002

The IBM Jikes compiler translates Java source files to bytecode. It

also supports incremental compilation and automatic makefile

generation,and is maintained by the Jikes Project:

http://ibm.com/developerworks/opensource/jikes/

Files:

/usr/bin/jikes

/usr/doc/jikes-1.18/license.htm

/usr/man/man1/jikes.1.gz

Provides:

Chapter 16. Programming RPM with Python

294

P jikes

P jikes = 1.18-1

Requires:

R ld-linux.so.2

R libc.so.6

R libc.so.6(GLIBC_2.0)

R libc.so.6(GLIBC_2.1)

R libc.so.6(GLIBC_2.1.3)

R libm.so.6

R libstdc++-libc6.2-2.so.3

16.3.6. Refining queries
The pattern method on a match iterator allows you to refine a query. This narrows an existing iterator
to only show the packages you desire. The basic syntax follows:

mi.pattern(tag_name, mode, pattern)

The two main uses of the pattern method are to query on more than one tag, such as the version and
name, or to narrow the results of a query, using the rich set of pattern modes. The mode parameter
names the type of pattern used, which can be one of those listed in Table 17-2.

Table 17-2 Pattern modes for the pattern method

Type Meaning

rpm.RPMMIRE_DEFAULT Same as regular expressions, but with \., .*, and
^..$ added

rpm.RPMMIRE_GLOB Glob-style patterns using fnmatch

rpm.RPMMIRE_REGEX Regular expressions using regcomp

rpm.RPMMIRE_STRCMP String comparisons using strcmp

Cross Reference

For more on these patterns, see the online manual pages for fnmatch(3), glob(7), regcomp(3),
regex(7), and strcmp(3). The pattern method calls rpmdbSetIteratorRE from the C API, covered in the
“Database Iterators” section in Chapter 15, Programming RPM with C .

To query for all packages starting with py, for example, you can use code like the following:

import rpm

ts = rpm.TransactionSet()

mi = ts.dbMatch()

Refining queries

295

mi.pattern('name', rpm.RPMMIRE_GLOB, 'py*')

for h in mi:

Do something with the header...

Listing 17-4 shows an example for glob-based querying.

Listing 17-4: rpmglob.py

#!/usr/bin/python

Acts like rpm -q and lists the N-V-R for installed packages

that match a given name using a glob-like syntax

#

Usage:

python rpmglob.py "package_fragment*"

import rpm, sys

ts = rpm.TransactionSet()

mi = ts.dbMatch()

if not mi:

print "No packages found."

else:

mi.pattern('name', rpm.RPMMIRE_GLOB, sys.argv[1])

for h in mi:

print "%s-%s-%s" % (h['name'], h['version'], h['release'])

When you run this script, you’ll see output like the following:

$ python rpmglob.py "py*"

pyxf86config-0.3.1-2

python-devel-2.2.1-17

pygtk2-devel-1.99.12-7

pygtk2-libglade-1.99.12-7

Chapter 16. Programming RPM with Python

296

pygtk2-1.99.12-7

pyOpenSSL-0.5.0.91-1

python-optik-1.3-2

python-docs-2.2.1-17

python-2.2.1-17

python-tools-2.2.1-17

In addition to working with the RPM database, the Python API also provides access to RPM files.

16.4. Reading Package Files
As you would expect, the Python API includes methods for working with RPM package files in addition
to installed RPM packages. Most of these methods require a header object, which you can read from
an RPM package file.

16.4.1. Reading headers from package files
Like the C function rpmReadPackageFile, the Python API provides a convenient way to read in a
header object from an RPM package file. The hdrFromFdno method reads an RPM header from an
open file descriptor. The basic syntax is:

h = ts.hdrFromFdno(fdno)

Note

The hdrFromFdno method uses Python’s low-level file descriptors instead of the higher-level Python
file objects. In the RPM C library, an FD_t is a FILE**. This could be bound to a Python class, but that
is outside the scope of this chapter.

The following example shows a function that opens a file, reads in the RPM header, and then closes
the file:

def readRpmHeader(ts, filename):

""" Read an rpm header. """

fd = os.open(filename, os.O_RDONLY)

h = ts.hdrFromFdno(fd)

os.close(fd)

return h

ts = rpm.TransactionSet()

h = readRpmHeader(ts, 'n-r-v.rpm')

Setting the verification flags

297

The hdrFromFdno method raises a number of exceptions based on issues detected with the package
files. The following example shows these exceptions:

def readRpmHeader(ts, filename):

""" Read an rpm header. """

fd = os.open(filename, os.O_RDONLY)

h = None

tryL

h = ts.hdrFromFdno(fd)

except rpm.error, e:

if str(e) == "public key not available":

print str(e)

if str(e) == "public key not trusted":

print str(e)

if str(e) == "error reading package header":

print str(e)

h = None

os.close(fd)

return h

ts = rpm.TransactionSet()

h = readRpmHeader(ts, 'n-r-v.rpm')

You can decide in your code whether the exceptions should stop processing or not.

16.4.2. Setting the verification flags
Starting with rpm 4.1, package files are verified automatically, which can cause problems, especially if
you are working with older packages, or packages without proper digital signatures.

In most cases, the automatic verification is an advantage, since you can have greater confidence
in the package files. However, you can call setVSFlags on a transaction set to change the default
behavior.

ts.setVSFlags(flags)

For example, if you have problems with old packages that do not have proper signatures, you can use
code like the following to ignore such checks:

Chapter 16. Programming RPM with Python

298

Set to not verify DSA signatures.

ts.setVSFlags(rpm.RPMVSF_NODSA)

Table 17-3 lists the flags you can pass to setVSFlags on a transaction set. These flags are bitmasks.
You can or them together for more than one setting. You must do a binary or. Do not use the Python or
keyword. Use | instead, for a binary or operation.

Table 17-3 Flags for setVSFlags

Flag Meaning

rpm.RPMVSF_NEEDPAYLOAD Leave the file handle positions at the beginning
of the payload.

rpm.RPMVSF_NOHDRCHK Don’t check the RPM database header.

rpm.RPMVSF_ NODSA Don’t check the header and payload DSA
signatures.

rpm.RPMVSF_ NODSAHEADER Don’t check the header DSA signature.

rpm.RPMVSF_ NOMD5 Don’t check the header and payload MD5
digests.

rpm.RPMVSF_ NORSA Don’t check the header and payload RSA
signatures.

rpm.RPMVSF_ NOSHA1HEADER Don’t check the header SHA1 digest.

rpm._RPMVSF_NODIGESTS Convenience to not check digests.

rpm._RPMVSF_NOSIGNATURES Convenience to not check signatures.

To turn off all checks, you can pass –1 to setVSFlags:

ts.setVSFlasgs(-1)

16.5. Dependency Comparisons
Dependency sets, first introduced in Chapter 15, Programming RPM with C on C programming, allow
you to compare the dependencies between two packages. One of the most common uses for this is to
compare a package file against a version on disk to see if the package file holds a newer version of a
package than the one installed.

You can call dsOfHeader on a header object to get the default dependency set for the header. Armed
with dependency sets from two headers, you can compare the sets to see which package is newer
using simple code like the following:

file_h = ts.hdrFromFdno(fd)

file_ds = file_h.dsOfHeader()

inst_ds = inst_h.dsOfHeader()

if file_ds.EVR() >= inst_ds.EVR():

print "Package file is same or newer, OK to upgrade."

else:

Dependency Comparisons

299

print "Package file is older than installed version."

Pulling this all together, Listing 17-5 provides a Python script that compares a package file against an
installed package, reporting on which is newer.

Listing 17-5: vercompare.py

#!/usr/bin/python

Reads in package header, compares to installed package.

Usage:

python vercompare.py rpm_file.rpm

#

import rpm, os, sys

def readRpmHeader(ts, filename):

""" Read an rpm header. """

fd = os.open(filename, os.O_RDONLY)

h = ts.hdrFromFdno(fd)

os.close(fd)

return h

ts = rpm.TransactionSet()

h = readRpmHeader(ts, sys.argv[1])

pkg_ds = h.dsOfHeader()

for inst_h in ts.dbMatch('name', h['name']):

inst_ds = inst_h.dsOfHeader()

if pkg_ds.EVR() >= inst_ds.EVR():

print "Package file is same or newer, OK to upgrade."

else:

print "Package file is older than installed version."

Cross-Reference

Chapter 16. Programming RPM with Python

300

The Python script in Listing 17-5 is essentially the same as the longer C program vercompare.c in
Listing 16-4 in Chapter 15, Programming RPM with C .

This script takes in a package file name on the command line, loads in the header for that package,
and looks up all packages of the same name installed in the RPM database. For each match, this
script compares the packages to see which is newer.

You can modify this script, for example, to print out a message if a package isn't installed.

16.6. Installing and Upgrading Packages
With the RPM system, you have a lot of choices. You can install or upgrade packages with the rpm
command. You can install or upgrade packages with special programs you write using the C API. And
you can install or upgrade packages using the Python API. If you are writing a special program to
install or upgrade packages, the Python API makes this task much easier. As with the C API, most of
your work needs to be part of a transaction set.

To install or upgrade a package, you need to create a transaction set, build up the transaction with
packages, which are stored as transaction elements within the transaction set, check for unresolved
dependencies, reorder the transaction set based on the dependencies, and then run the transaction
set. Running the transaction set installs or upgrades the packages. The following sections cover these
steps.

16.6.1. Building up the transaction set
Package installs and upgrades need to be performed within the context of a transaction set. To install
or upgrade a set of packages, you need to call addInstall with the package headers to install or
upgrade. The basic syntax follows:

ts.addInstall(header, key_data, mode)

When you call addInstall, you pass the header object along with arbitrary callback key data and a
mode flag. The mode flag should be 'i' to install a package, 'u' to upgrade a package, or 'a' as a special
code to make a package available for transaction checks but not install or upgrade the package.
The 'a' flag is rarely used. In most cases, you should use 'u', just as in most cases, you should install
packages with rpm –U instead of rpm –i.

The key_data parameter will get passed to the transaction set run callback, covered in the “Running
the Transaction” section later in this chapter.

Note

To remove packages instead of install or upgrade, call addErase instead of addInstall:

ts.addErase(package_name)

To set up a package to be upgraded or installed, you can use code like the following:

h = readRpmHeader(ts, sys.argv[1])

ts.addInstall(h, sys.argv[1], 'u')

This example expects a package file name on the command line (accessed with sys.argv[1]), and
reads in the package header using the readRpmHeader function introduced previously.

Transaction elements

301

The call to addInstall adds the header object (and the associated RPM package file) for an upgrade
with the 'u' mode flag. The name of the package file, from sys.argv[1], is passed as the arbitrary data
for the transaction set run callback function.

16.6.2. Transaction elements
Transaction sets are made up of transaction elements. A transaction element makes up one part of
a transaction and holds one package per operation (install or remove) in each transaction set. That
is, there is one transaction element per package per operation in the transaction set. You can iterate
over a transaction set to get each transaction element. Once you have a transaction element, you can
call methods on each element to check entries in the header as well as get dependency sets for the
package.

Table 17-4 lists the informational methods you can call on a transaction element. Most of the methods
listed in Table 17-4 return a single value.

Table 17-4 Informational methods on transaction sets

Method Returns

A Returns package architecture

E Returns package epoch

O Returns package operating system

R Returns package release number

V Returns package version

N Returns package name

NEVR Returns package name-epoch-version-release

DS Returns the package dependency set for a given
tag

FI Returns the file info set for the package

For more complex checking, the DS method returns the package dependency set for a given tag:

ds = te.DS(tag_name)

Pass one of 'Providename', 'Requirename', 'Obsoletename', or 'Conflictname' for the tag name. For
example:

ds = te.DS('Requirename')

The FI method returns the file info set for the package:

fi = te.FI(tag_name)

For the FI method, you must pass a tag name of 'Basenames'.

As an example, Listing 17-6 shows how to iterate through a transaction set to get transaction
elements.

Listing 17-6: te.py

#!/usr/bin/python

Chapter 16. Programming RPM with Python

302

Adds all package files on command line to a transaction

and prints out the transaction elements.

Usage:

python te.py rpm_file1.rpm rpm_file2.rpm ...

#

import rpm, os, sys

def readRpmHeader(ts, filename):

""" Read an rpm header. """

fd = os.open(filename, os.O_RDONLY)

h = ts.hdrFromFdno(fd)

os.close(fd)

return h

ts = rpm.TransactionSet()

Set to not verify DSA signatures.

ts.setVSFlags(rpm._RPMVSF_NOSIGNATURES)

for filename in sys.argv[1:]:

h = readRpmHeader(ts, filename)

print "Installing %s-%s-%s" % (h['name'], h['version'], h['release'])

ts.addInstall(h, filename, 'i')

print "This will install:"

for te in ts:

print "%s-%s-%s" % (te.N(), te.V(), te.R())

ts.check()

ts.order()

print "This will install:"

Checking and reordering the transaction elements

303

for te in ts:

print "%s-%s-%s" % (te.N(), te.V(), te.R())

The te.py script sets up a transaction and then prints out the elements, never completing the
transaction. The purpose here is just to show what is in the transaction. The second set of printed
output shows the results of the check and order methods, covered in the following section.

16.6.3. Checking and reordering the transaction elements
After you have called addInstall or addErase for each of the packages you want to install, upgrade, or
remove, you need to call two methods to verify the transaction set and order all the elements properly.
These two methods are check and order.

16.6.3.1. Checking the Dependencies
The check method checks the dependencies in a transaction set.

unresolved_dependencies = ts.check()

It returns None if all dependencies are resolved, or a complex tuple for each unresolved dependency.
In general, if the check method returns anything but None, you cannot perform the transaction.

On a dependency failure, check returns a complex tuple of the dependency information in the following
format:

((N,V,R), (reqN, reqV), needsFlags, suggestedPackage, sense)

The first element is a tuple of the name, version, and release of the package you are trying to install.
The next tuple holds the required name and required version or conflicting name and version. The
version will be None if the dependency is a shared library or other file.

The needs flags tell you about the requirement or conflict. The value is a bitmask that can
contain the following bit settings: rpm.RPMSENSE_EQUAL, rpm.RPMSENSE_GREATER, and
rpm.RPMSENSE_LESS. This tells you if the dependency is for a version of a package greater than
4.1, for example.

The suggested package names a package that solves the dependency. The packages considered
are those for which you call addInstall with a flag of 'a'. This value will be None if there is no known
package to solve this dependency.

You can tell whether the dependency is a conflict or a requirement based on the sense value, one of
rpm.RPMSENSE_CONFLICTS or rpm.RPMSENSE_REQUIRES.

For example, the following tuple shows a required package:

(('eruby-devel', '0.9.8', '2'), ('eruby-libs', '0.9.8'), 8, None, 0)

The following tuple shows a required shared library:

(('jpilot', '0.97', '1'), ('libpisock.so.3', None), 0, None, 0)

Note

This tuple format will likely change in future versions of RPM. This example shows the format in RPM
4.1. With each RPM release, check the online documentation on the Python API to look for changes.

Chapter 16. Programming RPM with Python

304

16.6.3.2. Transaction Check Method Callbacks
You can pass an optional callback function to the call to check. This callback gets called for each
unresolved dependency in the transaction set. You can use this callback to try to automatically bring in
required packages, for example.

The basic syntax for the transaction check callback is:

def checkCallback(ts, TagN, N, EVR, Flags):

Do something…

You can use a check callback to automatically bring in packages that are required into a transaction
set. You can bring in packages from the Red Hat RPM database package, which contains a database
of all Red Hat packages, the rpmdb-redhat package. You can open the database from this package
by using the trick described previously for opening transactions to more than one RPM database at a
time. Simply set the _dbpath macro to "/usr/lib/rpmdb/i386-redhat-linux/redhat", or the location of your
rpmdb-redhat database, and create a transaction set. Your check callback can then search this extra
database and add packages from that database into the current, real RPM database.

Your check callback can also attempt to find package files to resolve dependencies, from a disk
directory or network archive for example. The following code shows a stub check callback that you can
fill in to try to resolve dependencies. This callback sets up a format for finding unresolved packages in
another RPM database, or elsewhere. You need to fill in the skeleton with the algorithm you want to
actually resolve the dependencies.

def checkCallback(ts, TagN, N, EVR, Flags):

if TagN == rpm.RPMTAG_REQUIRENAME:

prev = ""

Nh = None

if N[0] == '/':

dbitag = 'basenames'

else:

dbitag = 'providename'

What do you need to do.

if EVR:

print "Must find package [", N, "-", EVR, "]"

else:

print "Must find file [", N, "]"

if resolved:

Running the transaction

305

ts.addIntall(h, h, 'i')

return -1

return 1

Depending on the values passed to the callback, your code must either find a package itself or a
package that provides a given file or capability to resolve the dependency. If you have another RPM
database to look at, such as the rpmdb-redhat database, you can use dbMatch to find the necessary
packages in that database. If, however, you are working with a directory of RPM files, you need to
build up file names from the package name, version, and release.

16.6.3.3. Reordering the Transaction Set
You can add packages to a transaction set in any order. The order method reorders the transaction
set to ensure that packages get installed or removed in the right order. The order method orders by a
topological sort using the dependencies relations between objects with dependency comparisons.

Note

You must call check prior to order.

16.6.4. Running the transaction
After setting up the transaction set, perform the transaction by calling run. You need to provide two
parameters:

ts.run(callback, client_data)

The callback parameter must be a Python function. The client_data is any data you want to pass to
the callback. There may be more than one package in the transaction set, so this data should not be
specific to a particular package.

Warning

You must not pass None as the client_data or you will get a Python error.

16.6.4.1. Transaction run Method Callbacks
The callback you pass to the run method on a transaction set is essential. Your callback must work
properly, or the transaction will fail. You must provide a callback.

Your callback will get called a number of times, mostly as a means to report progress. If you are
writing a graphical user interface, for example, you can use the progress callbacks to update a visual
progress meter.

The basic syntax for the transaction set run callback is:

def runCallback(reason, amount, total, key, client_data):

Do your stuff...

The key is the data you provided in the call to the addInstall method. The client_data is the data you
passed to the run method.

Chapter 16. Programming RPM with Python

306

Each time your callback is called, the transaction set will provide a reason flag. Table 17-5 lists the
values for the reason parameter.

Table 17-5 Transaction set run callback reason values

Value Reason

rpm.RPMCALLBACK_UNKNOWN Unknown problem

rpm.RPMCALLBACK_INST_PROGRESS Progress for installation

rpm.RPMCALLBACK_INST_START Start of installation

rpm.RPMCALLBACK_INST_OPEN_FILE Callback should open package file

rpm.RPMCALLBACK_INST_CLOSE_FILE Callback should close package file

rpm.RPMCALLBACK_TRANS_PROGRESS Transaction progress

rpm.RPMCALLBACK_TRANS_START Transaction start

rpm.RPMCALLBACK_TRANS_STOP Transaction stop

rpm.RPMCALLBACK_UNINST_PROGRESS Uninstallation progress

rpm.RPMCALLBACK_UNINST_START Uninstallation start

rpm.RPMCALLBACK_UNINST_STOP Uninstallation stop

rpm.RPMCALLBACK_REPACKAGE_PROGRESS Repackaging progress

rpm.RPMCALLBACK_REPACKAGE_START Repackaging start

rpm.RPMCALLBACK_REPACKAGE_STOP Repackaging stop

rpm.RPMCALLBACK_UNPACK_ERROR Error unpacking package file

rpm.RPMCALLBACK_CPIO_ERROR cpio error getting package payload

Your callback must handle at least two cases: a reason value of
rpm.RPMCALLBACK_INST_OPEN_FILE and rpm.RPMCALLBACK_INST_CLOSE_FILE.

With the reason of rpm.RPMCALLBACK_INST_OPEN_FILE, you must open the RPM package
file and return a file descriptor for the file. You need to keep this file descriptor in a global-scope or
otherwise-accessible variable, because with the reason of rpm.RPMCALLBACK_INST_CLOSE_FILE,
you must close this file.

16.6.4.2. Coding A Sample Callback
The following code shows a valid sample callback for upgrading and installing packages.

Global file descriptor for the callback.

rpmtsCallback_fd = None

def runCallback(reason, amount, total, key, client_data):

global rpmtsCallback_fd

if reason == rpm.RPMCALLBACK_INST_OPEN_FILE:

print "Opening file. ", reason, amount, total, key, client_data

Running the transaction

307

rpmtsCallback_fd = os.open(client_data, os.O_RDONLY)

return rpmtsCallback_fd

elif reason == rpm.RPMCALLBACK_INST_START:

print "Closing file. ", reason, amount, total, key, client_data

os.close(rpmtsCallback_fd)

This callback assumes that the call to addInstall passed client data of the package file name. This
callback ignores the client_data passed to the run method, but this is a perfect slot for passing an
object. You can use this, for example, to avoid having a global variable for the file descriptor.

16.6.4.3. Upgrading A Package
Listing 17-7 shows a simple Python script to upgrade or install a package.

Listing 17-7: rpmupgrade.py

#!/usr/bin/python

Upgrades packages passed on the command line.

Usage:

python rpmupgrade.py rpm_file1.rpm rpm_file2.rpm ...

#

import rpm, os, sys

Global file descriptor for the callback.

rpmtsCallback_fd = None

def runCallback(reason, amount, total, key, client_data):

global rpmtsCallback_fd

if reason == rpm.RPMCALLBACK_INST_OPEN_FILE:

print "Opening file. ", reason, amount, total, key, client_data

rpmtsCallback_fd = os.open(key, os.O_RDONLY)

return rpmtsCallback_fd

elif reason == rpm.RPMCALLBACK_INST_START:

print "Closing file. ", reason, amount, total, key, client_data

os.close(rpmtsCallback_fd)

Chapter 16. Programming RPM with Python

308

def checkCallback(ts, TagN, N, EVR, Flags):

if TagN == rpm.RPMTAG_REQUIRENAME:

prev = ""

Nh = None

if N[0] == '/':

dbitag = 'basenames'

else:

dbitag = 'providename'

What do you need to do.

if EVR:

print "Must find package [", N, "-", EVR, "]"

else:

print "Must find file [", N, "]"

if resolved:

ts.addIntall(h, h, 'i')

return -1

return 1

def readRpmHeader(ts, filename):

""" Read an rpm header. """

fd = os.open(filename, os.O_RDONLY)

h = ts.hdrFromFdno(fd)

os.close(fd)

return h

Running the transaction

309

ts = rpm.TransactionSet()

Set to not verify DSA signatures.

ts.setVSFlags(-1)

for filename in sys.argv[1:]:

h = readRpmHeader(ts, filename)

print "Upgrading %s-%s-%s" % (h['name'], h['version'], h['release'])

ts.addInstall(h, filename, 'u')

unresolved_dependencies = ts.check(checkCallback)

if not unresolved_dependencies:

ts.order()

print "This upgrade will install:"

for te in ts:

print "%s-%s-%s" % (te.N(), te.V(), te.R())

print "Running transaction (final step)..."

ts.run(runCallback, 1)

else:

print "Error: Unresolved dependencies, transaction failed."

print unresolved_dependencies

This script expects the name of an RPM package file on the command line, and attempts to upgrade
the package. (This will also install new packages.)

When you run the rpmupgrade.py script, you should see output like the following:

rpm -q jikes

jikes-1.17-1

python rpmupgrade.py jikes-1.18-1.i386.rpm

Upgrading jikes-1.18-1

This upgrade will install:

jikes-1.18-1

Chapter 16. Programming RPM with Python

310

jikes-1.17-1

Running transaction (final step)...

Opening file. 4 0 0 jikes-1.18-1.i386.rpm 1

Closing file. 2 0 2854204 jikes-1.18-1.i386.rpm 1

rpm -q jikes

jikes-1.18-1

This example shows that the package was upgraded after running the rpmupgrade.py script. Note
that with an upgrade, the original package, jikes-1.17-1 in this case, is also added to the transaction
set. With an install, this is not the case. That’s because the original package is removed as part of the
transaction.

If you run this script as a non-root user, you will likely see an error like the following:

$ python rpmupgrade.py jikes-1.18-1.i386.rpm

Upgrading jikes-1.18-1

This upgrade will install:

jikes-1.18-1

jikes-1.17-1

Running transaction (final step)...

error: cannot get exclusive lock on /var/lib/rpm/Packages

error: cannot open Packages index using db3 - Operation not permitted (1)

error: cannot open Packages database in /var/lib/rpm

If a package has a dependency on a file such as a shared library, you will see output like the following:

python rpmupgrade.py jikes-1.17-glibc2.2-1.i386.rpm jpilot-0_97-1_i386.rpm

Upgrading jikes-1.17-1

Upgrading jpilot-0.97-1

Must find file [libpisock.so.3]

Error: Unresolved dependencies, transaction failed.

(('jpilot', '0.97', '1'), ('libpisock.so.3', None), 0, None, 0)

If a package has a dependency on another package, you will see output like the following:

python rpmupgrade.py eruby-devel-0.9.8-2.i386.rpm

Upgrading eruby-devel-0.9.8-2

Must find package [eruby-libs - 0.9.8]

Where to Go from Here

311

Error: Unresolved dependencies, transaction failed.

(('eruby-devel', '0.9.8', '2'), ('eruby-libs', '0.9.8'), 8, None, 0)

16.7. Where to Go from Here
The RPM bindings for Python are documented along with the C programming API. On a Red Hat
Linux system, look in the file /usr/share/doc/rpm-devel-4.1/apidocs/html/group__python.html to see the
start of the Python-specific documentation.

Note that much of this online documentation covers the C functions that provide the Python bindings,
not the Python API itself. But, if you examine the online information on objects listed as classes, such
as rpmts, you can find the Python-specific documentation.

Furthermore, if you look into the .c files that make up the Python bindings, you can find PyMethodDef
structure tables. These tables provide useful glimpses into the Python API.

To learn more about programming in Python, install the python-docs package. The python-docs
package has a large set of online documentation for Python, including the official Python Tutorial. With
Red Hat Linux, start at /usr/share/doc/python-docs-2.2.1/html/tut/tut.html.

Cross Reference

Other tutorials are available at http://diveintopython.org for the Dive Into Python tutorial for
experienced programmers, and at http://py.vaults.ca/parnassus/apyllo.py/935043691.636055170 for
the Vaults of Parnassus listing of tutorials.

16.8. Summary
This chapter introduces the high-level RPM API for Python programming. You can use this API from
Python scripts to perform RPM functionality, just as you can write C programs using the RPM C API
covered in Chapter 15, Programming RPM with C .

In general, the Python API is simpler and requires fewer code statements than the corresponding
functionality in the C API.

Just about all of your work with the Python API requires a transaction set, which you can get by calling
rpm.TransactionSet.

To query the RPM database, call dbMatch on the transaction set object. To install or upgrade
packages, call addInstall, check, order, and run on the transaction set.

The next chapter switches to another language for accessing the RPM system: Perl. With the rich set
of APIs, you can write your RPM programs in C, Python, Perl, or any language that can call on code
written in one of these languages.

312

Chapter 17.

313

Programming RPM with Perl
This chapter covers:

• Using the RPM2 module to access information on package files

• Querying the RPM database from Perl

• Cross-referencing capabilities by the packages that provide and require capabilities

• Extracting information on packages

Perl is one of the most popular scripting languages. Used by system administrators, software
developers, and a host of other users, Perl runs on many operating systems including Linux, UNIX,
and Windows. Perl stands for Practical Extraction and Report Language, or sometimes Pathologically
Eclectic Rubbish Lister.

Note

In the same vein, LISP stands for Lots of Irritating Single Parenthesis and COBOL for Completely
Obnoxious Business Oriented Language.

I began my book Cross-Platform Perl (John Wiley & Sons, 2000) by mentioning that when I first
started learning Perl, I thought it was an evil plot. I still do. But it is a very practical evil plot. You can
get a lot of work done with Perl, and quickly.

Because of a long history of text processing, Perl is especially popular among system administrators.
Perl also supports add-on packages, called modules. You can find thousands of add-on modules for
text processing, networking, and a plethora of other tasks. There are so many modules available that
some people who don’t like the Perl syntax script with Perl anyway, because the available modules
save a lot of time.

Cross Reference

See search.cpan.org, the Comprehensive Perl Archive Network, for a listing of many Perl modules.

This chapter covers working with RPM files and the RPM database using Perl. You can combine RPM
usage with other Perl usage, such as generating HTML files or downloading RPMs over a network
link.

Cross Reference

Many of the RPM tools covered in Chapter 7, RPM Management Software are written in Perl.

17.1. Getting and Using the Perl RPM Modules
A number of Perl RPM modules are available. No one module provides all the features you need,
although with time, the Perl modules will consolidate into a few modules that most everyone uses. As
of this writing, the RPM2 module, by Chip Turner of Red Hat, provides the most recent approach to
working with the RPM system from Perl. This chapter covers the RPM2 module.

Red Hat Linux 8.0 comes with a perl-RPM2 package, which you need to install to use this module.
Otherwise, you can download the module from www.cpan.org. Install this module, as well as the perl
module, which provides the Perl language interpreter. Once you have this module installed and the
perl package installed, you are ready to go.

Chapter 17. Programming RPM with Perl

314

Note

The version of the perl-RPM2 package that ships with Red Hat Linux 8.0 has a bug in that it will
not open package files that were created with the version of rpm that ships with Red Hat Linux 8.0.
That is, the Perl module cannot read package files that ship with Red Hat Linux. You can read older
package files, though. This problem only affects attempts to read .rpm files, not installed packages.
The bug is related to reading signed packages but not having the GPG keys in the keyring. The latest
version on search.cpan.org fixes this problem.

The RPM2 module contains Perl methods to work on two types of RPM objects: RPM files and
installed packages.

17.2. Working with RPM Files
The RPM2 module provides a top-level object, RPM2, that acts as an entry point into the module.
From the RPM2 object, you either open the RPM database, covered in the "Programming with the
RPM Database" section, or open an RPM package file, covered here.

The first step in working with an RPM file is to open the file inside a Perl script.

17.2.1. Opening package files
The open_package subroutine opens an RPM package file and returns a header object (an
RPM2::Header). The basic syntax follows:

my $header = RPM2->open_package($filename);

For example:

my $header = RPM2->open_package("jikes-1.14-1-glibc-2.2.i386.rpm");

After you’ve opened a package, you can perform a number of query operations on the header object
returned by the open_package subroutine.

17.2.2. Listing tags from the package
Each RPM package has information stored under a variety of tags, such as the package name under
the NAME tag and the package long description under the DESCRIPTION tag.

Cross Reference

These are the same tags introduced with the --queryformat option to the rpm command discussed in
Chapter 4, Using the RPM Database .

The tag subroutine returns the value of a given tag. For example, to get the name of the package, use
the NAME tag:

use RPM2;

my $header = RPM2->open_package("jikes-1.14-1-glibc-2.2.i386.rpm");

print $header->tag("NAME"), "\n";

Convenience methods

315

Pulling this together, Listing 18-1 shows example script that lists the name and one-line short summary
of a package file.

Listing 18-1: rpmsum.pl

#!/usr/bin/perl

#

Lists summary from an RPM package file

Usage:

rpmsum.pl package_name.rpm

#

use strict;

use RPM2;

my $header = RPM2->open_package($ARGV[0]);

print $header->tag("NAME"), ": ", $header->tag("SUMMARY"), "\n";

Enter this script and name the file rpmsum.pl.

When you run this script, you need to pass the name of a package file on the command line. For
example:

$./rpmsum.pl jikes-1.14-1-glibc-2.2.i386.rpm

jikes: java source to bytecode compiler

17.2.3. Convenience methods
The RPM2 module includes convenience methods for all RPM tags. This means you can use the
method name in place of tag("NAME"). For example:

print $header->name(), ": ", $header->summary(), "\n";

17.2.4. Listing the name and version
The RPM2 module provides a handy subroutine for getting the NAME, VERSION, RELEASE, and
EPOCH tags, often abbreviated as NVRE. The subroutine, as_nvre, returns a single string with these
values in the standard format, with the values separated by minus signs.

Note

Usually, the EPOCH tag has no value. If there is an EPOCH value, you will see it output first, and then
a colon, and then the name, version, and release values. For example:

5:redhat-config-httpd-1.0.1-13

Chapter 17. Programming RPM with Perl

316

In this case, the EPOCH value is 5.

You can call this subroutine on any header object, or any package object to get the full name of the
package. For example:

print $header->as_nvre(), "\n";

17.2.5. Checking whether the package is a source package
Another handy subroutine tells you if an RPM file represents a source RPM or a binary RPM. The
is_source_package subroutine returns a true value if the package is a source package, and a false
value otherwise.

The rpmpkg.pl script, shown in Listing 18-2, shows how to use the as_nvre and is_source_package
subroutines.

Listing 18-2: rpmpkg.pl

#!/usr/bin/perl

#

Queries RPM package file and prints

out name and whether this is a source pkg.

Usage:

rpmpkg.pl package_name

#

use strict;

use RPM2;

my $header = RPM2->open_package($ARGV[0]);

if ($header->is_source_package()) {

print "Source package ", $header->as_nvre(), "\n";

} else {

print $header->as_nvre(), "\n";

}

17.3. Programming with the RPM Database
In addition to providing query routines for RPM files, you can also access the RPM database with the
RPM2 package.

To access the RPM database, your Perl script must first open the database.

Opening the database

317

17.3.1. Opening the database
Open the RPM database with a call to open_rpm_db on the RPM2 object. For example:

my $rpm_db = RPM2->open_rpm_db();

You can also specify the directory where the RPM database resides. This is most useful for accessing
a database in a non-standard location. For example:

my $rpm_db = RPM2->open_rpm_db("-path" => "/var/lib/rpm");

Note

The -path is normally used as a Perl bareword but is shown here as a string.

Once you have an RPM database object, you can call one of the find subroutines to find packages in
most of the same ways as supported by the rpm –q command.

17.3.2. Finding packages
The find_by_name subroutine finds a package or packages by name. It returns a Perl list of the entries
found. For example, if you installed more than one version of a package, find_by_name would return a
list of all the packages at the different versions.

Similar to find_by_name, find_by_name_iter returns an iterator to iterate over the packages that match
the query. The iterator approach is usually more efficient.

17.3.3. Iterating over packages
Iterators are important in the RPM2 package because they provide a more efficient interface to
potentially large sets of packages, and because iterators more closely match the underlying C API.
Furthermore, iterators are very easy to use. Simply call the next subroutine to move ahead to the next
element, that is, the next package.

For example:

my $pkg_iter = $rpm_db->find_by_name_iter("kernel");

while (my $pkg = $pkg_iter->next()) {

Do something ...

}

Listing 18-3 shows a script that acts much like the rpm –q command, without any other command-line
options.

Listing 18-3: rpmname.pl

#!/usr/bin/perl

#

Queries RPM database for given package.

Chapter 17. Programming RPM with Perl

318

Usage:

rpmname.pl package_name

#

use strict;

use RPM2;

my $rpm_db = RPM2->open_rpm_db("âˆ’path" => "/var/lib/rpm");

my $pkg_iter = $rpm_db->find_by_name_iter($ARGV[0]);

while (my $pkg = $pkg_iter->next()) {

print $pkg->tag("NAME"), "-", $pkg->tag("VERSION"), "\n";

}

$rpm_db->close_rpm_db();

When you run this script, you need to pass the name of a package to query. For example:

$./rpmname.pl kernel

kernel-2.4.18

17.3.4. Additional query subroutines
The find_by_name_iter subroutine finds a package by its name. The RPM2 module also supports a
number of other query routines, listed in Table 18-1.

Table 18-1 RPM2 module query routines

Routine Usage

find_all() Returns a list with all the packages in the
database

find_all_iter() Returns an iterator over all the packages in the
database

find_by_file($filename) Finds all packages that own the given file,
returning a list

find_by_file_iter($filename) Finds all packages that own the given file,
returning an iterator

find_by_name($package_name) Finds all packages with the given name,
returning a list

find_by_name_iter($package_name) Finds all packages with the given name,
returning an iterator

Additional query subroutines

319

find_by_provides($capability) Finds all packages that provide the given
capability, returning a list

find_by_provides_iter($capability) Finds all packages that provide the given
capability, returning an iterator

find_by_requires($capability) Finds all packages that require the given
capability, returning a list

find_by_requires_iter($capability) Finds all packages that require the given
capability, returning an iterator

To verify the find routines, you can try the following script and compare the results with the rpm
command. Listing 18-4 shows the script that finds what package provides a capability and also which
packages require the capability.

Listing 18-4: rpmprovides.pl

#!/usr/bin/perl

#

Queries RPM database for given package,

listing what it provides and what other

packages require the capability.

#

Usage:

rpmprovides.pl package_name

#

use strict;

use RPM2;

my $rpm_db = RPM2->open_rpm_db();

my $pkg_iter = $rpm_db->find_by_provides_iter($ARGV[0]);

print "Provides: ", $ARGV[0], "\n";

while (my $pkg = $pkg_iter->next()) {

print "\t", $pkg->as_nvre(), "\n";

}

Now, what packages require this capability.

Chapter 17. Programming RPM with Perl

320

my $pkg_iter2 = $rpm_db->find_by_requires_iter($ARGV[0]);

print "Requires: ", $ARGV[0], "\n";

while (my $pkg2 = $pkg_iter2->next()) {

print "\t", $pkg2->as_nvre(), "\n";

}

$rpm_db->close_rpm_db();

When you run this script with the name of a capability, you'll see output like the following:

$./rpmprovides.pl httpd

Provides: httpd

httpd-2.0.40-8

Requires: httpd

mod_perl-1.99_05-3

5:redhat-config-httpd-1.0.1-13

mod_python-3.0.0-10

1:mod_ssl-2.0.40-8

Note

The 5: in 5:redhat-config-httpd-1.0.1-13 and 1: in 1:mod_ssl-2.0.40-8 represent the EPOCH tag value.

To verify this script, run the rpm -q command to see if you get the same packages listed. For example:

$ rpm -q --whatprovides httpd

httpd-2.0.40-8

$ rpm -q --whatrequires httpd

mod_perl-1.99_05-3

redhat-config-httpd-1.0.1-13

mod_python-3.0.0-10

mod_ssl-2.0.40-8

In both cases, you see the same packages listed. You can use this technique to verify your scripts.

Note

The find_by_provides_iter subroutine requires the name of a package, such as bash. You cannot pass
a file name, such as /bin/bash, to get the name of the package that provides this capability (a file,
really).

Getting information on packages

321

17.3.5. Getting information on packages
The tag, as_nvre, and is_source_package subroutines that worked on header objects read from RPM
files, shown previously, also work with package entries returned from the RPM database.

For example, Listing 18-5 shows a script, rpminfo.pl, that prints out descriptive information about a
given package.

Listing 18-5: rpminfo.pl

#!/usr/bin/perl

#

Queries RPM database for given package and prints info.

Usage:

rpminfo.pl package_name

#

use strict;

use RPM2;

my $rpm_db = RPM2->open_rpm_db("-path" => "/var/lib/rpm");

my $pkg_iter = $rpm_db->find_by_name_iter($ARGV[0]);

while (my $pkg = $pkg_iter->next()) {

printInfo($pkg);

}

$rpm_db->close_rpm_db();

Prints info on one package.

sub printInfo {

my($pkg) = shift;

print $pkg->as_nvre(), ", ", $pkg->tag("ARCH"), ", ",

$pkg->tag("OS"), ", ", $pkg->tag("PLATFORM"), "\n";

print $pkg->tag("SUMMARY"), "\n";

Chapter 17. Programming RPM with Perl

322

print "Group: ", $pkg->tag("GROUP"), "\n";

print $pkg->tag("DESCRIPTION"), "\n";

print "Vendor: ", $pkg->tag("VENDOR"), ", ", $pkg->tag("URL"), "\n";

print "Size: ", $pkg->tag("SIZE"), "\n";

}

When you run this script, you’ll see output like the following:

$./rpminfo.pl XFree86

XFree86-4.2.0-72, i386, linux, i386-redhat-linux-gnu

The basic fonts, programs and docs for an X workstation.

Group: User Interface/X

XFree86 is an open source implementation of the X Window System. It

provides the basic low level functionality which full fledged

graphical user interfaces (GUIs) such as GNOME and KDE are designed

upon.

Vendor: &FORMAL-RHI;, http://www.xfree86.org

Size: 30552239

17.3.5.1. Listing the Installed Date
The installed date is a number value representing the number of seconds since the start of the UNIX
epoch, January 1, 1970, which predates the start of the Linux epoch by about 20 years. So, when you
get the value of the INSTALLTIME tag, you’ll see a meaningless number.

To make sense of this number, pass the value to the Perl localtime function. Listing 18-6 shows an
example of this.

Listing 18-6: rpmdate.pl

#!/usr/bin/perl

#

Queries RPM database for given package,

prints out name, vendor, and date installed.

Usage:

rpmdate.pl package_name

#

Getting information on packages

323

use strict;

use RPM2;

my $rpm_db = RPM2->open_rpm_db();

my $pkg_iter = $rpm_db->find_by_name_iter($ARGV[0]);

while (my $pkg = $pkg_iter->next()) {

printDate($pkg);

}

$rpm_db->close_rpm_db();

Prints installation data for one package.

sub printDate {

my($pkg) = shift;

my $date = localtime($pkg->tag("INSTALLTIME"));

printf("%-20s %-17s %s\n", $pkg->as_nvre(), $pkg->tag("VENDOR"), $date);

}

Note

The printf function in this script can do something the rpm command cannot do. Even with the --
queryformat option, you cannot group multiple items and then set the size; with Perl, you can. Simply
assign the multiple values to a string, or use the handy as_nvre subroutine, which gathers up to four
tags together into one string.

When you pass the name of a package to this script, you’ll see the date the package was installed. For
example:

$./rpmdate.pl kernel

kernel-2.4.18-14 &FORMAL-RHI; Sat Oct 5 12:29:58 2002

17.3.5.2. Handling String Array Tags
Not only is the date stored in a format that adds complication to your script. A number of tags are
string arrays, not scalar strings. This means you may see output that is all mashed together.

To help deal with this, the following subroutine takes in an array of strings and returns a string that is
built using a passed-in delimiter:

Chapter 17. Programming RPM with Perl

324

sub arrayToString {

my($sep) = shift;

my(@array) = @_;

my($str);

$str = $array[0];

for ($i = 1; $i < $#array; $i++)

{

$str = $str . $sep . $array[$i];

}

return $str;

}

Note

Show your Perl expertise and earn extra points by implementing the arrayToString subroutine as a
single Perl statement that uses the join function.

The following list shows the tags that are an array of strings:

*BASENAMES

*CHANGELOGNAME

*CHANGELOGTEXT

*DIRNAMES

*FILEGROUPNAME

*FILELANGS

*FILELINKTOS

*FILEMD5S

*FILEUSERNAME

*OLDFILENAMES

*PROVIDENAME

*PROVIDEVERSION

*REQUIRENAME

*REQUIREVERSION

Getting information on packages

325

Cross Reference

Chapter 4, Using the RPM Database covers more on these tags.

17.3.5.3. Listing the Files In A Package
The files subroutine provides a list of all the files in a package. Listing 18-7 shows how to access this
list.

Listing 18-7: rpmfiles.pl

#!/usr/bin/perl

#

Queries RPM database for given package,

prints out the files in the package.

Usage:

rpmfiles.pl package_name

#

use strict;

use RPM2;

my $rpm_db = RPM2->open_rpm_db();

my $pkg_iter = $rpm_db->find_by_name_iter($ARGV[0]);

while (my $pkg = $pkg_iter->next()) {

printFiles($pkg);

}

$rpm_db->close_rpm_db();

Prints installation data for one package.

sub printFiles {

my($pkg) = shift;

my $files = arrayToString("\n", $pkg->files());

Chapter 17. Programming RPM with Perl

326

print "Files:\n", $files, "\n";

}

sub arrayToString {

my($sep) = shift;

my(@array) = @_;

my($str);

$str = $array[0];

for (my $i = 1; $i < $#array; $i++)

{

$str = $str . $sep . $array[$i];

}

return $str;

}

When you run this script, you’ll see output like the following:

$./rpmfiles.pl jikes

Files:

/usr/bin/jikes

/usr/doc/jikes-1.17/license.htm

17.3.6. Comparing versions
The RPM2 module overrides the spaceship operator, <=>, to perform version comparisons between
packages. The script in Listing 18-8 shows how to compare all local RPM files against the newest
installed version of the same package, if the package is installed.

Listing 18-8: rpmver.pl

#!/usr/bin/perl -w

#

Compare versions of all *.rpm files against the

latest packages installed (if installed)

#

Comparing versions

327

Usage:

rpmver.pl

This script looks for all *.rpm files.

#

use strict;

use RPM2;

my $rpm_db = RPM2->open_rpm_db();

for my $filename (<*.rpm>) {

my $h = RPM2->open_package($filename);

Ensure we compare against the newest

package of the given name.

my ($installed) =

sort { $b <=> $a } $rpm_db->find_by_name($h->name);

if (not $installed) {

printf "Package %s not installed.\n", $h->as_nvre;

} else {

my ($result) = ($h <=> $installed);

if ($result < 0) {

printf "Installed package %s newer than file %s\n",

$installed->as_nvre,

$h->as_nvre;

} else {

printf "File %s newer than installed package %s\n",

$h->as_nvre,

$installed->as_nvre;

}

}

Chapter 17. Programming RPM with Perl

328

}

The sort { $a <=> $b } in front of the find_by_name call sorts all the packages of that name by the
version number, so that the comparison is performed against the newest installed version of the
package. The ($h <=> $installed) compares the header from the RPM file on disk against the newest
installed version of the package.

When you run this script, you’ll see output like the following, depending on which RPM files you have
in the local directory:

$ perl rpmver.pl

Package acroread-4.0-0 not installed.

Package canvas-7.0b2.0-1 not installed.

Installed package jikes-1.18-1 newer than file jikes-1.14-1

Installed package SDL-1.2.4-5 newer than file SDL-0.9.9-4

Package ted-2.8-1 not installed.

17.3.7. Closing the database
When you are done with the RPM database, call close_rpm_db, as shown following:

$rpm_db->close_rpm_db();

Note that this call is not necessary, as the RPM2 module will close the database when the object, in
this case $rpm_db, goes out of scope.

17.4. Where to Go from Here
One of the strengths of Perl is that there are so many add-on packages available. In addition, Perl is
really strong in text processing. You can combine these strengths to provide cleaner output for RPM
database queries, for example, avoiding the complex syntax for the --queryformat option to the rpm
command. Perl can do more than the --queryformat option allows. For example, you can combine
multiple values together into a Perl string and then format the output. The --queryformat option only
allows formatting on each value individually, not groups of values.

In addition, you can combine one of the Perl templating modules, such as Text::Template or
HTML::Template, to create an HTML page for a given package. You could use Perl to create formatted
HTML pages for all the installed packages on your system, with HTML links to cross-reference all the
dependencies.

Cross Reference

Download these modules from the CPAN site, www.cpan.org.

This chapter covers the RPM2 module. Right now, the RPM2 module supports only querying
packages and the RPM database. Future versions will likely add the ability to install, update, and
remove packages.

In addition to this module, you can find an RPM module with RPM::Header and RPM::Database
classes. Another module, RPM::Specfile, provides the ability to turn Perl modules, such as those

Summary

329

stored on CPAN, into RPM packages. The RPM::Specfile module helps create an RPM spec file for a
Perl module.

The Perl-RPM-Perlonly bundle provides an alternative version of the RPM::Header module written
entirely in Perl with no usage of the C rpm library. This makes RPM access much easier on platforms
for which you don’t have the RPM system.

The RPM-Tools bundle includes RPM::Update, which compares the packages installed on your
system (listed by calling rpm –qa) with the packages available on another system, that may be
available only with a network link. This module can also update packages that are older than the
designated master system. RPM::Make, also part of the RPM-Tools bundle, helps create RPM
packages from a Perl script. This module does not support all the spec file options described in
Chapter 9, Working with Spec Files , but it can help you make simple packages.

You can download all these modules from the CPAN site.

17.5. Summary
This chapter introduces the RPM2 add-on module to allow Perl scripts to access information on RPM
package files and in the RPM database. To access an RPM file and query information about that
file, you need to call the open_package subroutine. Once you’ve opened the file, you can call the
tag, as_nvre, is_source_package, and files subroutines on the header object to query data about the
package.

To access the RPM database, call open_rpm_db. Once you’ve opened the database, you can call
one of the find subroutines, such as find_by_name or find_by_name_iter, to search for packages. The
subroutines that have names ending with _iter, such as find_by_name_iter, return an iterator object to
iterate over the packages found. The other find subroutines, such as find_by_name, return a Perl list
of the packages found.

You can then call the tag, as_nvre, and files subroutines on the package objects to query information
about the packages.

When you are done with the RPM database, call close_rpm_db.

330

Chapter 18.

331

Using RPM on Non-Red Hat Linuxes
This chapter covers:

• Dealing with RPM issues on other versions of Linux

• RPM standardization

• Working around RPM differences when installing RPMs

• Working around RPM differences when building RPMs

• Dealing with non-RPM-based Linux distributions

Although its name was originally the Red Hat Package Manager, RPM has been adopted by most
major Linux distributions. With this adoption, RPM has moved from its Red Hat roots, and RPM now
stands for the RPM Package Manager.

In addition, the RPM package format is being adopted by the Linux Standards Base (LSB). The LSB
defines a set of standards to help maintain compatibility for all Linux distributions.

Cross Reference

See www.linuxbase.org for more on the LSB.

This chapter covers differences in how Linux distributions use RPM, ways to work around these
differences, and also tools you can use for non-RPM distributions.

18.1. Troubleshooting RPM Installation Issues
The main RPM issues when dealing with installing RPMs on other versions of Linux are:

*Different versions of RPM itself

*Different divisions of software into packages

*Dealing with dependency issues

*Different install locations

The following sections expand on these issues.

18.1.1. Dealing with RPM versions
Red Hat Linux 8.0 ships with RPM version 4.1. Other distributions of Linux ship with other versions of
RPM. Thus, one of the first commands you can run on another Linux distribution is the rpm --version
command, to see what RPM version is in use and help identify any issues. For example:

$ rpm --version

RPM version 4.1

Once you know the RPM version, you can plan for any issues that arise from installing RPMs made
with a different RPM version. For example, RPM 4.0 and higher inserts dependency information

Chapter 18. Using RPM on Non-Red Hat Linuxes

332

automatically into RPMs. If your Linux distribution runs RPM 3.x, you may need to disable some of the
dependency checks, for example, if you want to install RPMs built under RPM 4.x onto an RPM 3.x
system.

On installing RPMs, you can disable the dependency checks with the --nodeps option. If you do this,
though, you should manually check that the dependencies are really met by your Linux installation.

On the other hand, if you want to install RPMs built on an RPM 3.x system onto an RPM 4.x system,
you may need to deal with package signatures. RPM 4.x versions also automatically check for
signatures. When installing packages on an RPM 4.x system, you can disable this feature with the --
nosignature option.

Using these techniques, you should be able to install packages built with RPM 4.1 on systems that use
RPM 3.x versions or vice versa.

18.1.2. Dealing with divisions of software into packages
There is no standardization as to how large applications are divided into packages on different Linux
distributions. This means that dependencies between packages may differ.

If your dependencies are for packages provided with the Linux distribution, which includes a huge
number of packages, you must address this issue. The package an RPM depends on may not exist
and may not even be needed, on a particular Linux distribution.

If instead the dependencies are for files, especially shared libraries, you should be okay for the most
part, unless the files are located in different directories.

The only real solution to this problem is to turn off dependency checks on installing, with the --
nodeps option. Then you must check manually that your system really does provide all the necessary
dependencies. Use the techniques shown in Chapter 5, Package Dependencies to verify all the
dependencies are met on your system.

Warning

Using the --nodeps option can lead to problems with your RPM database, because you are installing
packages by defeating the RPM system's safeguards for dependencies. Only use the --nodeps option
if you are really sure the dependencies are met on your system, even if from a different package than
expected.

18.1.3. Dealing with dependency issues
One of the toughest areas to deal with is the problem of dependencies. This topic ranges from the
very simple issue of installing a necessary package to complex issues of shared library versions or
particular Perl modules.

Start with the simple case and make certain that you haven’t failed to install a necessary RPM that
provides the right dependency. In most cases, you can download a vendor-specific package from
your Linux vendor, such as www.suse.com for SUSE Linux. Most Linux vendors provide HTTP or FTP
sites with a large set of packages created for their distributions. If such a distribution-specific package
solves a dependency issue, this is the easiest way around the problem.

After you verify that you haven't simply omitted a necessary package, move on to other potential
explanations. Another issue involves shared libraries and ELF, or Extended Linking Format, symbols.
A package may require an older or newer version of a shared library. Applications that are tied

Dealing with install locations

333

to a particular version of a shared library can cause problems, since you may not want to install
incompatible versions of a shared library.

If the dependency is for a system-shared library, such as the shared C library, you can often recompile
the package (rebuild from a source RPM) to get the package to use the newer or older version of the
system library. This is possible because most Linux applications don’t call on version-specific features
of system shared libraries (some do, but most don’t). If the dependency is for an application-shared
library, this is more serious, since there were likely API changes that could impact the application.
Install the package owning the application-shared library and again, try to rebuild the package from the
source RPM.

Cross Reference

You can use the rpm -qf command to query which package owns a given file. You can use the rpm -q
--whatprovides command to query for which package provides a given capability. Chapter 5, Package
Dependencies covers more on dependencies.

Some packages are considered developer packages. These usually depend on some base package.
For example, the rpm-devel package depends on the rpm package. The rpm-python package depends
on both the rpm package and the python package (at particular version numbers as well).

This naming scheme of a base package and base-devel is used for Red Hat Linux packages, but may
not be used for other vendor packages. In any case, you can solve this type of dependency by finding
the relevant base packages that the package you are trying to install depends on. Consult the manuals
that come with your Linux distribution or browse the online RPM repositories to see what naming
conventions are used for your Linux distribution.

Many packages depend on scripting language interpreters, such as Perl. Sometimes the dependency
is based on scripts used in a package, such as install or trigger scripts. You can have problems arise
with the locations of these scripting interpreters. Perl, for example, is usually installed in /usr/bin/perl
on most Linux systems. Another common location is /usr/local/bin/perl. In addition, packages may
depend on particular add-on modules, especially Perl modules. With most versions of Linux released
in the last few years, you should be able to override a Perl dependency with the --nodeps option as
long as you have Perl installed.

File paths may also cause problems. For example, a file that a package depends on may be in a
different location or owned by a different package. For this case, you can try to find the package that
owns the file and make sure that package is installed. If your Linux vendor provides a pre-built RPM
database of all packages, such as the rpmdb-redhat package, you can query this database to find out
which package owns the file for that version of Linux.

18.1.4. Dealing with install locations
Linux vendors can install software anywhere. For example, some distributions place a lot of software
under /opt instead of the more common /usr. From an RPM perspective, this is mostly an issue with
file dependencies and the install location for packages. Evolving file system standards also help limit
this issue.

You can attempt to relocate any package using the --badreloc option.

Cross Reference

Chapter 3, Using RPM covers the --badreloc option.

Chapter 18. Using RPM on Non-Red Hat Linuxes

334

But, while the --badreloc option will relocate the files in a package, it will not modify the contents of
those files. So, any file inside a package that references files and directory locations may not work
properly, since it may have the old, invalid, paths.

The only real way around this problem is to edit any script files that come with the package and
contain hard-coded paths. If the paths reside inside binary executables, you need to get a source RPM
for the package, patch the sources and then create a new RPM.

18.1.5. When all else fails, rebuild from the source package
When all of these techniques fail to install a package, you still have a fallback option. If you have the
source RPM for a package, you can install the source RPM on the new system and then edit the spec
file until you can rebuild a package that will install on your version of Linux.

For example, a set of Build Root Policy (brp) helper scripts are run at the end of the %install section in
an RPM. These scripts perform tasks such as compressing man pages. The Mandrake brp scripts use
bzip2 compression. Red Hat brp scripts use gzip compression. This is one case where rebuilding an
RPM and then installing may work best.

18.2. Handling Problems Building RPMs
Given all these differences, how can you create RPMs while avoiding problems? With some work
setting things up, you can create an RPM build environment that solves most vendor issues. This
depends on taking a methodical approach to building your packages and using techniques to avoid
vendor issues wherever possible.

When building RPMs, you will face many of the same problems@@mdand solutions@@mdas when
installing RPMs. For example, due to the different ways Linux vendors divide software into packages,
your RPMs will likely have issues defining the proper dependencies. There are also a number of
issues that apply only when building RPMs.

The following sections cover the main issues when building RPMs.

18.2.1. Writing distribution-specific packages
One of the ways around all the differences between Linux distributions in RPM usage is to define
distribution-specific packages. To do this, you create a separate package on each Linux distribution
you support.

That’s a lot of work. If possible, fit the differences into macros and use a single spec file to reduce
some of this work. This technique works up to a point. Sometimes, your spec file becomes too
complicated and you may decide that it is easier to create multiple spec files, one per Linux
distribution.

One way to help make vendor-specific packages, or to see which RPM macros are defined on a given
Linux distribution, is to look for an RPM that contains the distribution-specific RPM configuration. For
example, on Red Hat Linux systems, the Red Hat RPM configuration is defined by the redhat-rpm-
config package.

You can list the files in this package to see where Red Hat defines macros specific to their Linux
distribution.

$ rpm -ql redhat-rpm-config

Dealing with automatic dependency generation

335

/usr/lib/rpm/redhat

/usr/lib/rpm/redhat/brp-compress

/usr/lib/rpm/redhat/brp-redhat

/usr/lib/rpm/redhat/brp-sparc64-linux

/usr/lib/rpm/redhat/brp-strip

/usr/lib/rpm/redhat/brp-strip-comment-note

/usr/lib/rpm/redhat/brp-strip-shared

/usr/lib/rpm/redhat/find-lang.sh

/usr/lib/rpm/redhat/find-provides

/usr/lib/rpm/redhat/find-requires

/usr/lib/rpm/redhat/macros

/usr/lib/rpm/redhat/perl.prov

/usr/lib/rpm/redhat/perl.req

/usr/lib/rpm/redhat/rpmrc

These files, such as /usr/lib/rpm/redhat/macros, show you what is specific to a given Linux distribution.
You can then look at the macros defined in these files to identify settings for a particular distribution, in
this case, Red Hat. Armed with this knowledge, you can better create portable RPM spec files.

18.2.2. Dealing with automatic dependency generation
One of the features in RPM 4.x is the automatic generation of dependencies. For a variety of reasons
including different package layouts, different directory structures, or different versions of RPM, you
may need to disable some or all of automatic generation of dependencies.

You can disable the automatic generation of dependencies by placing the following directive in your
spec file:

Autoreq: 0

If you do so, you need to use the Requires: tag to manually define all requirements. This is not a good
solution to the issue of automatic dependencies however. Most likely, you will need to override the
%{__find_requires} and %{__find_provides} macros in order to filter out any unwanted dependencies.

These two macros resolve to shell scripts that perform the automated dependency checks, as you can
see with the rpm --eval command:

$ rpm --eval "%__find_provides"

/usr/lib/rpm/find-provides

rpm --eval "%__find_requires"

/usr/lib/rpm/find-requires

You can override these scripts to filter out any dependencies that cause problems for your packages.

Chapter 18. Using RPM on Non-Red Hat Linuxes

336

18.2.3. Dealing with different macros
Different Linux vendors define different macros in their RPM setup. This may mean not only different
values for the macros, but different macro names as well. Because of this, it is best to define your own
local set of macros when building RPMs.

As much as possible, depend on your own RPM macros. You can define your macros in terms of
vendor-specific macros using conditional statements in your spec files, a topic covered in Chapter 10,
Advanced RPM Packaging . You can also read examples in the “Build Environment and Macros”
section of this chapter.

This really boils down to creating a disciplined RPM build environment.

18.2.4. Making relocatable packages
You should aim to make your packages relocatable so that users can install your packages into any
directory. This makes it easier to deal with the locations chosen by different Linux distributions, such
as /usr, /usr/local, or /opt, for installing add-on software.

Cross Reference

Chapter 9, Working with Spec Files covers the spec file format. Chapter 10, Advanced RPM
Packaging covers making relocatable packages.

You can use the %{_bindir} macro in your spec files, which will help create per-distribution packages
using the right settings.

In addition, you can define macros in your spec files that define the location for dependencies. You can
then use the --define option to the rpmbuild command to define values for your macros that specify the
locations for the dependencies.

Note

This technique of setting up Linux distribution-specific macros can help solve a lot of problems with
cross-platform RPMs.

18.2.5. Creating an RPM build environment
If you start with the idea that you want to build RPMs for multiple versions of Linux, you can set up an
RPM build environment that cleanly separates most vendor-specific issues.

The key issues with the build environment are:

*Detecting the vendors

*Using macros to define a clean build process

*Handling different dependencies

18.2.5.1. Detecting Vendors
To make a clean build environment, you need to be able to detect the Linux vendor and make build
settings based on this vendor. To help with this, many Linux vendors install a special file with the
vendor name, or a special package with the vendor name. You can query for either of these.

For files, the convention follows:

Creating an RPM build environment

337

/etc/vendor-release

For example:

$ more /etc/redhat-release

Red Hat Linux release 8.0 (Psyche)

For packages, the convention is vendor-release for a package name. For example:

$ rpm -q redhat-release

redhat-release-8.0-8

You can use either approach or simply define a macro for the vendor and use the --define option to set
the macro. For example:

rpmbuild –ba --define 'linuxVendor suse'

With this definition, you can use the macro %linuxVendor inside your spec files. It is generally
easier, though, if your scripts can automatically detect the Linux vendor instead of having to define
it manually. The manual approach works, though, if it becomes too much effort to detect the vendor
automatically.

18.2.5.2. Build environment and macros
Once you can detect the Linux vendor, you can create macros based on the differences between
Linux distributions that affect your applications.

Cross Reference

Chapter 20, Customizing RPM Behavior covers RPM macros.

The macros that specifically help you with platform differences include the %if .. %endif conditional.
You can use this in combination with special macros you define. In addition, command-line options
such as --with, --without, and --target allow you to control features and the build target within an RPM.

The %if macro allows you to specify a condition within your spec file. For example:

%if %{old_5x} && %{old_6x}

%{error: You cannot build for .5x and .6x at the same time}

%quit

%endif

%if %{old_5x}

%define b5x 1

%undefine b6x

%endif

%if %{old_6x}

Chapter 18. Using RPM on Non-Red Hat Linuxes

338

%define b6x 1

%undefine b5x

%endif

You can also use %if to control settings such as the Requires:, as shown in the following example:

%if %{build6x}

Requires: util-linux, pam >= 0.66-5

%else

Requires: util-linux, pam >= 0.75-37, /etc/pam.d/system-auth

%endif

The --with command-line option defines a special macro starting with _with_. For example, the
following command-line option defines a feature to use:

$ rpmbuild –bc --with ssh filename.spec

This example defines the macro _with_ssh to --with-ssh. This format was specially designed to work
with GNU configure. You can use this for conditional builds for platform-dependent issues.

The --without command-line option similarly defines a macro starting with _without_. The convention is
that this option defines a feature the code should not use.

You can combine --with and --without to turn on and off features referenced in your spec files. For
example:

./configure %{?_with_ssh}

This will pass the following command line if the _with_ssh macro is defined:

./configure --with-ssh

If this option is not defined, the command will be:

./configure

The --target option sets the spec file macros %_target, %_target_arch, and %_target_os . For
example:

$ rpmbuild -bc --target ppc-ibm-aix /usr/src/redhat/SPECS/jikes.spec

18.2.5.3. Compatibility and Glue Packages
Not all Linux distributions are the same. Macros alone won’t provide work-arounds for all the
differences. You can, though, get a lot of mileage from compatibility and glue packages.

A compatibility package provides a legacy API on newer systems that no longer support the legacy
API. By convention, compatibility packages are named with a leading compat- to signify their purpose.

For example:

$ rpm -q --qf "%{description}" compat-libstdc++

Dealing with Non-RPM-Based Linux Versions

339

The compat-libstdc++ package contains compatibility Standard C++

Using a compatibility package allows you to create programs that use a least-common-denominator
approach, programming to the oldest but most common APIs. As some Linux distributions eliminate
the old APIs, compatibility packages can provide the missing APIs.

Similarly, a glue package provides a dependency that exists on some Linux distributions but not
others. It glues together your package with the Linux distribution that is missing an essential capability.

Note

A key point in both of these approaches is to separate the compatibility and glue packages from
your main application packages. The application packages should be as clean of vendor issues as
possible. Instruct your users to install the compatibility or glue packages as needed (based on their
Linux distribution) along with the main application package or packages.

With all this discussion of RPM and Linux differences, you might think that Linux is one big mess.
That’s not true. Linux maintains a high degree of compatibility among Linux distributions as well
as among processor architectures. Most programs originally created for Linux on Intel-based
architectures compile cleanly on Linux versions running on other processor architectures such as
MIPS, SPARC, and ARM.

The main differences lie in how Linux vendors split up the huge number of files associated with Linux
into RPM packages as well as which versions of tools like C compilers the vendors ship.

18.2.5.4. Dealing with Signatures
With SUSE Linux, or any Linux based on UnitedLinux 1.0, the RPM packages are signed with
OpenPGP version 4, not 3, as used in RPM 4.1. This means that you must use some other, non-RPM
means to extract the signatures from an RPM package, and then verify these signatures with gpg.

18.3. Dealing with Non-RPM-Based Linux Versions
The main Linux distributions that don’t support RPM are the Debian GNU/Linux family and Slackware
Linux. To help with these distributions, you can use a package-conversion tool called alien.

18.3.1. Handling non-RPM packages with alien
Alien is a package that supports conversions between RPM and so-called alien package formats such
as the dpkg (Debian GNU/Linux), slp (Stampede Linux), and tgz (Slackware Linux) formats.

You can use alien on your RPM-based Linux system to convert RPMs to some other format, such as
the Debian dpkg. You can also use alien to convert other package formats into RPMs, depending on
which way you need to go.

18.4. Standardizing RPMs
RPM is being considered as part of the Linux Standard Base, or LSB, 1.3. This will define a standard
packaging format for Linux distributions, and over time reduce the RPM differences between
distributions.

Chapter 18. Using RPM on Non-Red Hat Linuxes

340

In addition, other efforts are underway to help unify the diverse Linux distributions, including the
Filesystem Hierarchy Standard and the adoption of RPM by many Linux vendors.

18.4.1. Filesystem Hierarchy Standard
The FHS, or Filesystem Hierarchy Standard, defines the purpose of all the upper-level directories on
Linux systems, such as /var and /usr/bin. This standard, along with the Linux Standard Base, or LSB,
is driving Linux distributions to a greater degree of similarity.

The FHS helps by specifying where applications should get installed and which directories should be
left to local administrators to manage. The FHS also defines the purpose of all Linux directories, giving
vendors and application writers a better idea of where they should install their packages.

Cross Reference

See www.linuxbase.org for more on the LSB. See www.pathname.com/fhs/ for more on the FHS.

18.4.2. RPM adoption
RPM has been adopted by a large number of Linux distributions. In addition, standardization efforts,
both for RPM and for filesystem locations, are making Linux systems less varied.

This means that over time, many of the RPM-related differences between Linux distributions will fade
away, making it easier to create cross-platform RPMs.

18.5. Summary
This chapter covers differences in RPM versions between various Linux distributions, and techniques
you can use to get around these differences. Each Linux vendor packages software differently, even if
the vendor uses RPM. This can cause problems unless you write your spec files carefully.

Inside your RPM spec files, you can use conditional elements as well as platform-based macro
definitions to help create RPMs for multiple packages.

Some of the best conventions are to split the software in your applications from any compatibility or
glue packages, separate packages that provide missing features for various flavors of Linux.

Standardization efforts such as the Linux Standard Base and Filesystem Hierarchy Standard are
bringing Linux vendors closer and closer together. Widespread adoption of RPM by most Linux
distributions also helps.

While this chapter covers RPM on other Linux distributions, the next chapter tackles RPM outside of
Linux.

Chapter 19.

341

RPM on Other Operating Systems
This chapter covers:

• Running RPM on other operating systems

• Bootstrapping RPM on other operating systems

• Setting up the RPM environment

• Creating non-Linux RPMs

• Setting up an RPM build environment

• Cross-building packages

RPM was originally designed on Linux and for most of its life has been a Linux-centric package
management system. But most Linux programs are portable to most versions of Unix or Unix -like
operating systems. Linux is, after all, a Unix-workalike operating system.

The RPM system is no exception. It has been ported to a number of operating systems, including quite
a few Unix variants. The source code is freely available, so you can port RPM to other systems as
well.

This chapter covers running RPM on non-Linux operating systems, including getting the RPM system
in the first place, bootstrapping an RPM environment, and creating packages for other operating
systems.

The first step is to get RPM for your system, or port RPM if it isn’t already available.

19.1. Running RPM on Other Operating Systems
The RPM system, made up of mostly the rpm and rpmbuild commands, have been ported to a number
of operating systems. There is nothing stopping you from running the RPM system on other platforms.

Other operating systems have their own native package management software. You may prefer the
way RPM works, or merely want to standardize on RPM across all platforms you manage. There
will always be a few issues, however, when running RPM on other operating systems. For example,
operating system patches and updates are likely to be distributed in the operating system’s native
package management format, not RPM. Many applications will be updated also using the system’s
native package management format.

You will need to always keep in mind that there are two package management schemes in use:
RPM and the native one. This issue has not stopped a great many people from using RPM on other
systems, though, as shown by the list of platforms RPM has been ported to (see Table 20-1 for the
list).

On the plus side, package management has always been one of the main areas where versions of
Linux, Unix, and other operating systems differ, sometimes quite a lot. By using RPM, you can transfer
your knowledge of package management from one system to another, saving valuable time and
hassles. You will be able to update systems in the same manner, a big plus if you manage a diverse
set of systems.

Another reason to use RPM on other operating systems is that in most cases, RPM provides far more
capabilities than the native package management software. Following the RPM philosophy, each

Chapter 19. RPM on Other Operating Systems

342

package can be separately verified, checked, and updated. Each package lists the other packages it
depends on, and also lists the capabilities it provides. You can automate the installation and upgrade
processes with RPM. You can also perform a lot of version and signature comparisons. All of this
leads to a more secure, more robust system.

Many operating systems don’t include these capabilities in the native package management software.
This is why many users run RPM on other operating systems.

Cross Reference

See Chapter 1, Introduction to RPM for more on the philosophy behind RPM.

If you decide to use RPM on a non-Linux system, the first step is getting RPM for your system, if it is
available.

19.1.1. Getting RPM for your system
The first step to using RPM on non-Linux platforms is getting the RPM system for your platform. In
most cases, this is a relatively easy step, as RPM has been ported to a great many platforms, as listed
on the main RPM Web site.

Cross Reference

Links to RPM versions for various platforms are listed at www.rpm.org/platforms/.

Go to this site and download the versions for the platforms you need. Table 20-1 lists the platforms
RPM has been ported to, as reported by the RPM site.

Table 20-1 Available Platforms for RPM

Platform Notes

AIX

AmigaOS With GeekGadgets

BeOS With GeekGadgets

FreeBSD

HP-UX 10.20+, 9.04

IRIX

Linux Multiple platforms including Alpha, Intel, Motorola
68000, SGI MIPS, PowerPC, and SPARC

LynxOS

MachTen

MacOS X

Mint

NCS System V

NetBSD

OS/2

OSF/1 3.2+

SCO OpenServer 5.0.2+

Running RPM on Windows

343

Sinix

Solaris Solaris for SPARC 2.4 and 8+, Solaris for Intel

SunOS 4.1.3

Windows Under Cygwin

Note that RPM has likely been ported to even more platforms. These are just the ones reported to the
rpm.org site.

Note

If you fix a bug in RPM on a non-Linux system, or if you port RPM to a new system, please report this
to the rpm.org site maintainers, as well as make your work available for others. You never know, but
someone else may fix a problem you’re facing.

If Table 20-1 does not cover the platforms you need, you must compile and bootstrap the RPM
environment for your platforms, as covered in the "Bootstrapping RPM on Other Operating Systems"
section, following.

Note

Don’t expect to find RPMs of the RPM system for these other platforms. If you did, there would be no
way to install RPM. Instead, you’ll find RPM packaged in a variety of formats, typically using a native
bundling format for a given system, or at least a supported format. Compressed tar files are very
common. RPM for IRIX systems come in IRIX tardist format.

If RPM is available for your system, download the package and follow any installation instructions that
come with the package. For example, RPM for Solaris 8 requires the libiconv library, as well as the
Solaris packages SUNWzlib and SUNWbzip. You must install these packages prior to installing RPM.

Each operating system will have similar requirements. Windows systems have a few extra
requirements due to the fact that Windows is very different from Linux or Unix-like systems.

19.1.2. Running RPM on Windows
The version of RPM for Windows requires cygwin, originally the Cygnus port of many Unix tools to
Windows. Now part of Red Hat, you can download the cygwin environment from the main cygwin site.

Cross Reference

Download cygwin from www.cygwin.com.

You can download a setup.exe program to install the environment on Windows. After installation, you
can download the RPM system for Windows.

After you have RPM installed, you can set up your RPM system. If RPM wasn’t already ported to your
operating systems, however, you will need to bootstrap RPM on your platforms.

19.2. Bootstrapping RPM On Other Operating Systems
If you cannot find a version of RPM that has been ported to your platform, you can port it yourself. The
RPM system usually isn’t that hard to port to any platform that can appear like Unix or Linux systems,
such as any platform that supports POSIX system calls or something like these system calls.

Chapter 19. RPM on Other Operating Systems

344

Don’t be dismayed by the sheer size of the RPM package. Much of the RPM system was carefully
designed to run across multiple platforms, so file access is abstracted to special portability routines.
For example, RPM has been ported to both AmigaOS and BeOS, two non-Unix operating systems.

19.2.1. Downloading the RPM software
To bootstrap RPM on another operating system, download the RPM source code from the main RPM
site.

Cross Reference

You can download the RPM source code from ftp://ftp.rpm.org/pub/rpm/dist/.

Note that you probably do not want to download an RPM of the sources, since your platform won’t
have RPM available. In most cases, you’ll want to download a tarred compressed archive, such as
rpm-4.1.tar.gz for RPM version 4.1.

19.2.2. Extracting the software
If the system you plan to port RPM doesn’t have the tar and gzip commands available, or something
that supports these formats, then you need to find a way to extract the software.

Note

Programs such as WinZip on Windows support extracting .tar.gz files. Your platform may have a
similar program.

One way is to port the gzip and tar commands to your platform.

Cross Reference

You can download the sources for tar and gzip from www.gnu.org.

Another way is to extract the sources on a platform with these commands available, such as a Linux
platform. Then, create a file using a format supported by your operating system and transfer the files
to the other system.

Once you have the RPM source code available on your target system, and all the files are extracted,
you are ready to start porting. The first step is really simple: read.

19.2.3. Reading the INSTALL file
In the main RPM source directory, you will see two very important files: README and INSTALL. Read
them both. (You would be surprised at how many times people need to be told this.)

Of the two, the INSTALL file has much more detailed information on installing RPM on a new system.
The INSTALL file describes the libraries required by RPM, provides tips on compiling RPM, and
describes some of the set up work necessary after compiling the RPM system.

Some of the hardest parts of the RPM system to port, though, may be in the database, compression,
and encryption calls, used as libraries by the RPM system.

19.2.4. Libraries required by RPM
Rather than invent everything from scratch, the RPM system makes use of a number of libraries,
including those listed in Table 20-2.

Tools for building RPM

345

Table 20-2 Libraries used by RPM

Library Purpose

Berkeley DB RPM database, using db1 and db3

bzip2 Compression

gettext International text lookup

gpg For digital signatures

gzip Compression

popt Processing command-line options

zlib Compression

Read through the INSTALL file to find out where you can download versions of these libraries. You
may find that each library has its own set of dependencies, all of which you need to port to your target
platform.

19.2.5. Tools for building RPM
In addition to the libraries listed in Table 20-2, RPM requires a number of GNU utilities for building
RPM, including those listed in Table 20-3.

Table 20-3 Tools used to build RPM

Tool Usage

Autoconf Builds configure scripts

Automake Used with autoconf

GNU make Used to control building the sources

Libtool Used by the autogen.sh script

In addition to all this, RPM works best with the GNU C compiler, GCC, and the GNU make program,
gnumake, or simply gmake.

Cross Reference

The source code for all the GNU tools is available at www.gnu.org.

19.2.6. Compiling RPM
After downloading the RPM sources, extracting all the files and installing all the prerequisite libraries,
you are ready to start compiling RPM.

RPM includes quite a few subsystems, such as popt for parsing command-line options. Each of these
subsystems requires some configuration. Most of this configuration is automated through the use of
the autogen.sh script and the autoconf/automake tool used to create configure scripts.

The autogen.sh script is a Bourne shell script that checks for specific versions of necessary tools
and libraries. After checking dependencies, the autogen.sh script calls different autogen.sh scripts in
the beecrypt, libelf, popt, and zlib directories. When done with that task, the autogen.sh script calls
configure.

Pass a command-line option of --noconfigure to disable the call to configure.

Chapter 19. RPM on Other Operating Systems

346

Edit the autogen.sh script if you are using different versions of the necessary tools. The autogen.sh
script is coded to require the specific versions of these tools as were used originally to build the RPM
package. In addition, your system may have libraries stored in different locations than those expected
by the autogen.sh, so it's a good idea to edit this script and verify all the assumptions.

Note

One really big assumption in this script is that you have a Unix-like operating system. If not, you will
need to determine how to set up the Makefiles manually. This requires a lot of trial and error while
you edit the Makefiles and then see if you can build the software. Fix each problem that arises and try
again.

When you are done with the autogen.sh script, you can use the following basic commands to create
system-specific Makefiles, compile RPM and install the commands:

$./configure

$ make

$ make install

The configure script takes the Makefile.in files and uses these files as templates to create custom
versions of Makefile.in files, tuned to your system. (The automake system starts with a Makefile.am
file, creates an expanded Makefile.in file, and finally results in a Makefile tuned to your system.) If all
else fails, you can copy each Makefile.in file to Makefile and then edit the Makefile to make one that
will work on your system.

Cross Reference

See the GNU site, at www.gnu.org, for more on the autoconf and automake tools.

If the make install step fails, you can manually copy the RPM executables and scripts to a directory for
system commands.

19.2.7. Handling problems
If RPM fails to compile or install, you can still work around many issues. The key is to find out what
went wrong, fix the problem, and try again. You may go through this loop many times before RPM
successfully compiles and installs.

Most problems can be solved by changing the configuration settings. If possible, change the inputs
to the configure command to specify C compiler options, and so on, that you discover you need. You
can then run the basic commands to build RPM again, but with any special options you discovered are
necessary:

$./configure –any_options_set_here

$ make

$ make install

If you take this approach, you avoid having to edit a number of Makefiles (one in each source code
subdirectory) by hand. You also have an easier time of switching to different command-line options as
you determine more solutions to the compilation problems.

Setting Up the RPM System

347

If this won’t work, though, you can edit the Makefile.am file or the generated Makefile directly to
add whatever settings are needed. For example, you may need to specify additional directories for
libraries, or some C compiler compatibility option.

As you discover problems, remember you are not alone in porting RPM. Check the RPM mailing list,
where the question of getting RPM going on other platforms comes up frequently.

Cross Reference

For details on viewing the RPM mailing list archives and signing up for the list, see www.rpm.org/
mailing_list/.

19.3. Setting Up the RPM System
Once you have RPM available on your platform, you need to set up the RPM system. This includes
setting up the RPM database and creating an RPM environment.

19.3.1. Setting up the RPM database
After you have the RPM system available on your platform, you need to set up the RPM database.
This usually involves two steps:

*Initializing an empty RPM database

*Populating the database with packages, especially for dependencies

Both steps are necessary.

19.3.1.1. Initializing an Empty RPM Database
After you have the RPM system installed on your platform, the next big step is to create an RPM
database for your platform. You can make an empty database with the rpm --initdb command, as
shown following:

mkdir /var/lib/rpm

rpm --initdb

The first command creates the default directory for the RPM database.

You may need to pass command-line options to specify a non-default location of the RPM database,
such as the following:

rpm --dbpath /location/of/your/rpm/database --initdb

Use a command like this one if you don’t want to place the RPM database in its default location.

In addition, use the –v option to add more verbose output. This is very useful if errors occur. Use the --
root option to specify a different root directory for RPM operations. Use the --rcfile option to specify a
non-default set of rc files and the --macros option to specify a non-default set of macros.

Cross Reference

Chapter 20, Customizing RPM Behavior covers RPM customization.

Chapter 19. RPM on Other Operating Systems

348

Initializing the RPM database creates the necessary structure for an empty database. You can then
fill, or populate, the database with packages. In most cases, all you need to do is install packages to
populate the RPM database, as each installed package gets added to the database.

19.3.1.2. Handling Dependencies for Packages Installed Without RPM
Each time you install a package, you populate the RPM database. This works well, as long as you
have already installed all the dependencies for the packages you want to install.

On an operating system that is based on RPM, such as Red Hat Linux, all packages (except for some
bootstrapping code) are installed with RPM. That means nearly everything on the system is defined in
the RPM database. The RPM database then has a full knowledge of what you have installed and can
properly handle dependencies. Thus, a failure to find a dependency means that you have not installed
the requisite package that provides the needed capability.

On an operating system that is not based on RPM, however, such as Solaris or IRIX, most packages
have already been installed by some means other than RPM.. That’s because these operating
systems use different native package-management techniques and different package formats.

It is very likely that RPM packages you want to install have dependencies that come from non-RPM
packages. For example, the rpm program on Windows depends on the cygwin environment, yet this
environment needs to be installed with a Windows setup.exe program, not with the rpm command.

To get around this problem, you need to populate the new RPM database with a package or packages
that reflect the current system in order to properly handle dependencies. The main way to do this is to
set up a virtual package.

19.3.1.3. Setting Up A Virtual Package
You can get around the problem of pre-existing software by building a virtual package that lists the
system libraries@mdinstalled without RPM@mdin an RPM package. This way, the rpm command will
find that the dependencies are installed, even if they were not really installed with RPM. You need to
do this for all capabilities and system libraries installed outside of RPM control.

To help create such a virtual package, use the vpkg-provides.sh script from the scripts directory. The
vpkg-provides.sh script searches a list of directories for shared libraries and interpreters (such as
shells). The vpkg-provides.sh script then creates a spec file that lists all the files found, files that are
managed outside of RPM. You can use this spec file to create an RPM and install the RPM using the
rpm command to populate the RPM database.

The RPM spec file created by the vpkg-provides.sh doesn’t really install any files, as all the files are
already installed. Instead it makes a package that claims ownership for all these files so that RPM
dependencies can function properly.

The vpkg-provides.sh script accepts three main command-line options: --spec_header, --ignore_dirs,
and --no_verify.

The --spec_header option tells the script the name of the RPM spec file it should use as a header for
the spec file it will produce. You need to provide the path to the file. For example:

sh vpkg-provides.sh --spec_header /path/to/spec/file

You need to provide a spec file header to make a complete spec file. This header should contain the
Summary, Name, Version, and Release settings, at least. Chapter 9, Working with Spec Files covers
these spec file tags.

Setting up the RPM database

349

The --ignore_dirs option tells the vpkg-provides.sh script to ignore certain directories. You need to
pass a list of egrep search patterns that identify the directories to ignore. Separate each pattern with a
pipe character, |.

Note

The egrep command may not be available on your system. It may be easier to edit the vpkg-
provides.sh script and manually specify the directories to ignore.

The --no_verify option tells the vpkg-provides.sh script to skip the step of creating a script to verify
checksums of all files in the package.

In addition to these main command-line options, you can also pass the following options to the vpkg-
provides.sh script.

The --shlib_dirs option tells the vpkg-provides.sh script the directories to look for shared libraries. Pass
a colon-delimited list of directories. For example:

sh vpkg-provides.sh --spec_header /path/to/spec/file \

--shlib_dirs "/bin:/usr/bin:/sbin:/usr/sbin:/usr/ucb:/usr/bsd"

The --interp_dirs option tells the vpkg-provides.sh script which directories to look in to find interpreters
such as sh, bash, perl, wish (Tcl/Tk), and awk. The --interps option tells the vpkg-provides.sh script the
names of the interpreter commands. Both these options expect a colon-delimited list.

The --find_provides option tells the vpkg-provides.sh script the name of the find-provides script to use,
defaulting to /usr/lib/rpm/find-provides.

The vpkg-provides.sh script defines specific directories to look in for shared libraries and interpreters
under various operating systems. You will most likely need to edit this section.

In fact, if you are working with a non-Unix system, or if you experience problems running the vpkg-
provides.sh script, you can edit the file to remove the problematic commands. You can also create a
new script in a scripting language supported on your system. The vpkg-provides.sh script is a Linux
shell script. Linux and Unix systems should be able to run the script, but non-Unix systems likely
won’t have the commands and may also not support shell scripts at all. In an effort to be generic, the
vpkg-provides.sh script does a lot of work. You can limit this by explicitly specifying directories and
commands, for example. And, if all else fails, you can create a virtual package manually (covered in
the following section).

When complete, the vpkg-provides.sh script outputs a spec file, using the header you provided, and
outputs a set of Provides: lines to specify what the package provides. It then outputs some empty
definitions for the prep, build, install, and clean sections of the spec file.

For example, you can run the vpkg-provides.sh script with a command like the following:

$ sh ./vpkg-provides.sh --spec_header my_header.spec --find_provides ./find-provides --no_verify

Note

If you run this script as a non-root user, you may get a number of permission errors as the vpkg-
provides.sh script searches through system directories.

The script will then output your spec file header along with output like that shown in Listing 20-1.

Chapter 19. RPM on Other Operating Systems

350

Listing 20-1: Output from the vpkg-provides.sh script

Provides: /bin/sh

Provides: /bin/csh

Provides: /bin/ksh

Provides: /bin/perl

Provides: /bin/awk

Provides: /bin/nawk

Provides: /bin/oawk

Provides: /usr/bin/sh

Provides: /usr/bin/csh

Provides: /usr/bin/ksh

Provides: /usr/bin/perl

Provides: /usr/bin/awk

Provides: /usr/bin/nawk

Provides: /usr/bin/oawk

Provides: /sbin/sh

Provides: /usr/dt/bin/dtksh

Provides: /usr/xpg4/bin/sh

Provides: /usr/xpg4/bin/awk

%prep

nothing to do

%build

nothing to do

%install

nothing to do

%clean

nothing to do

%files

no files in a virtual package

The vpkg-provides.sh script also outputs a package description that explains how the package was
created. This is important so that you know this is a virtual package.

Creating the RPM environment

351

When done, use the rpmbuild command to create an RPM from the generated spec file.

Cross Reference

Chapter 8, Creating RPMs: An Overview covers how to run the rpmbuild command, and Chapter 9,
Working with Spec Files covers spec files in detail.

19.3.1.4. Creating a Virtual Package Manually
Even on Unix-like systems you may experience troubles with the vpkg-provides.sh script. That’s
simply because the vpkg-provides.sh script assumes a number of Unix and GNU utilities are available.
In most cases, it will work best if you can fix what went wrong and run the vpkg-provides.sh script
again.

If all else fails, though, you can create a virtual package spec file manually. Create a spec file starting
with the Summary, Name, Version, and Release settings.

Looking at the output shown in Listing 20-1, you can create a Provides: statement for each shared
library on your system, and each interpreter, such as shells. Add each statement to your spec file. For
example:

Provides: libgen.so

Copy the prep, build, install, and clean sections exactly as they are in Listing 20-1. You can now run
the rpmbuild command to create a virtual package. Install this package.

19.3.2. Creating the RPM environment
The RPM environment is made up of a large number of RPM settings and macro definitions. Run the
rpm --showrc command to see the current environment settings on Linux:

$ rpm –showrc

ARCHITECTURE AND OS:

build arch : i386

compatible build archs: i686 i586 i486 i386 noarch

build os : Linux

compatible build os's : Linux

install arch : i686

install os : Linux

compatible archs : i686 i586 i486 i386 noarch

compatible os's : Linux

RPMRC VALUES:

macrofiles : /usr/lib/rpm/macros:/usr/lib/rpm/i686-linux/macros:/etc/

rpm/macros.specspo:/etc/rpm/macros.db1:/etc/rpm/macros.cdb:/etc/rpm/macros:/etc/

Chapter 19. RPM on Other Operating Systems

352

rpm/i686-linux/macros:~/.rpmmacros

optflags : -O2 -march=i686

This output was truncated for space. As you can see, there are a lot of expected settings. You need to
set up these same settings and macros, but with the proper values for the new system on which you
are running RPM.

The files rpmrc.in and macros.in serve as the default templates used to create the rc and macro
settings, respectively. These files are modified by the configure script to include values specific to the
local operating system. You can edit these files as needed for your system, prior to installing RPM.
That is, edit these files between calling the make command and the make install command.

Cross Reference

Chapter 20, Customizing RPM Behavior covers how to customize the RPM settings and macros, along
with the popt aliases.

The INSTALL file in the RPM sources also describes some modifications you may want to make to the
macros.

19.4. Creating Non-Linux RPMS
Once you have RPM set up on a system, you should be able to create RPMs using the rpmbuild
command on that system.

Warning

Do not build RPM packages logged in as a root or Administrator user. If something goes wrong,
rpmbuild could destroy files in your system. Remember that spec files can define a number of
commands and shell scripts. Any of these could have an error that could cause major damage when
run as a root user.

Before building RPMs with the rpmbuild command, though, you may want to customize the build
environment to better reflect your system. You may also find it is too difficult to build most RPMs on the
non-Linux system and instead focus on cross-building packages, should the rpmbuild command not
work on the target systems.

This section covers topics related to building RPMs on or for non-Linux systems.

19.4.1. Setting up a build environment
In RPM terms, your build environment consists of the directories where you build RPMs, as well as
the rc and macro settings that define all of the variables in an RPM-based system. To set up your build
environment, you need to ensure that all the rc and macro settings reflect the true environment on
your non-Linux system.

The rpm --showrc command, discussed previously in the "Creating the RPM Environment" section,
lists the settings for your system. You can use this command to verify all the settings.

You may want to change some settings, such as the top directory where RPMs are built. By default,
this setting is something like the following:

_topdir %{_usrsrc}/redhat

Cross-building packages

353

Cross Reference

See Chapter 20, Customizing RPM Behavior for more on how to customize the rc and macro settings.

In most cases the _topdir setting on Red Hat Linux systems map to the /usr/src/redhat directory. Your
system may not even have a /usr/src directory. Also you may not want to build RPMs in a redhat
directory, which may cause confusion if you are building on a non-Red Hat Linux system.

Cross Reference

See Chapter 18, Using RPM on Non-Red Hat Linuxes for more information on setting up a build
environment for RPMs. Chapter 18, Using RPM on Non-Red Hat Linuxes focuses on other Linux
systems, but many of the same techniques apply.

With a build environment set up, you should be able to create RPMs with the rpmbuild command. If
this doesn’t work, or is too difficult, then you can try cross-building packages.

19.4.2. Cross-building packages
You may find that it is too difficult to create RPMs on a given platform. It may be easier to build the
RPMs on another platform, such as a Linux system, as if it were on the target platform. This is called
cross-building packages, since you are building a package on one system specifically designed for
another.

In most cases, the target platform is quite different from the system where you cross-build packages.
Otherwise, you would likely just build the RPMs on the target platform.

The key issues with cross-building are the following:

*You must compile any executables with a cross compiler for the proper target platform.

*You must set the target platform in the RPMs you build.

*You must manage dependencies, and likely need to turn off the automatic generation of
dependencies.

Note

Setting up a cross-building environment is oftentimes more work than it is worth. If you can compile
applications and build packages on the target system, do that. The cross-building option should be
used only if you really cannot build packages on the target system. For example, many handheld or
small-format computers lack the processor performance or memory to compile applications. These are
good candidates for cross-building.

To compile executables for another platform, especially a platform with a different processor
architecture, you need a cross compiler. A cross compiler runs on one system and produces
executables for another.

Note

Cross compilers are heavily used when working with embedded and small device systems. The
embedded system may not have the processor power to compile applications, or it may simply be
inconvenient to compile applications on the embedded system.

The Linux gcc compiler can act as a cross compiler if you install the right gcc add-on packages. See
the GNU site for more on the gcc compiler.

Chapter 19. RPM on Other Operating Systems

354

Cross Reference

You can download GCC and other GNU software from www.gnu.org.

In addition to compiling for the target platform, you need to ensure that the RPM is marked as being
for the target architecture. If not, the rpm command will fail when trying to install the RPM on the target
system.

You can set the target architecture with the --target option to the rpmbuild command. For example:

rpmbuild –bi --target arm-sharp-linux

This specifies a target CPU architecture of ARM, the vendor Sharp (which just happens to make an
ARM-based Linux device) and the operating system of Linux. The basic format is:

cpu-vendor-os

Cross Reference

See Chapter 11, Controlling the Build with rpmbuild for more on using the --target option to the
rpmbuild command.

You must also turn off or correct any automatically generated dependencies in RPMs you build for
other platforms. That is, any dependencies based on the operating system or architecture of the
system you are cross-building on will likely not be found, or be found in a different location or format,
on the target platform.

This is where the handy RPM feature of automatically building the dependencies does not work to
your advantage. You can turn off this feature, however.

Cross Reference

See Chapter 18, Using RPM on Non-Red Hat Linuxes for information on how to turn off the automatic
generation of dependencies.

You should turn off the automatically building of dependencies for any packages you cross build.

Using these techniques, you can build packages on one system for use on another, very different
system. Due to the difficulties, you should only go this route if it becomes too difficult to use the
rpmbuild command on the target systems.

19.5. Summary
With its superior package-management capabilities, especially for automated installations and
upgrades, you may want to use RPM on non-Linux platforms. As the experience of many developers
has shown, you can indeed use RPM on non-Linux platforms.

The rpm.org site maintains a listing of operating systems where developers have ported RPM. If you
are lucky, you can download RPM for your operating system and start working right away. If you are
not lucky, you will need to port RPM to your target system.

If RPM has been ported to your architecture, download the package and follow the installation
instructions. If RPM has not been ported to your architecture, download the RPM sources and all
prerequisite libraries. You may need to port each library to your architecture before you can even begin
to port RPM.

Summary

355

The RPM sources use a configured build process that also requires some prerequisite tools. You need
to get or port these to your architecture as well. Whew.

Once everything is in place, you can start the port of RPM. In many cases, you just need to figure out
how to get RPM to compile and everything will fall into place. In other cases, you will need to work on
each RPM subsystem to get it to build and run.

After you have RPM for your system, you need to initialize the RPM database with the rpm --initdb
command. You can then start to populate your RPM database. Because a large number of libraries
have already been installed on your system, you may need to create a virtual package that claims to
provide these files. Installing such a virtual package will allow you to install other RPMs that may be
dependent on system libraries.

Much of porting RPM to another platform depends on the RPM environment and how you need to
customize that environment. The next chapter shows how to customize your RPM environment, on
Linux or on other operating systems.

356

Chapter 20.

357

Customizing RPM Behavior
This chapter covers:

• Defining RPM macros

• Configuring RPM settings

• Adding popt aliases

RPM provides a high degree of customization in the form of basic settings, such as where your RPM
database is located and the path to common commands like setup or make, to the ability to define
new macros and command-line aliases. This chapter covers the three main ways to customize RPM
behavior: RPM macros, RPM rc settings, and popt aliases.

20.1. Customizing with RPM Macros
Starting with RPM 3.0, RPM macros have replaced most RPM settings from the rpmrc files.

An RPM macro defines a setting to the RPM system. A macro can be defined as a static value, such
as the directory where the RPM database is installed. A macro can also be defined in terms of other
macros. Furthermore, a macro can be defined with parameters.

For example, the following defines two macros in a macro file:

%_usr /usr

%_usrsrc %{_usr}/src

In this case, the macro %_usr names the /usr directory. The macro %_usrsrc names the /usr/src
directory, showing how to set a macro in terms of another macro.

Cross Reference

The macro syntax is used in the query formats introduced in Chapter 4, Using the RPM Database .

20.1.1. Defining macros
RPM provides a number of places you can define macros, including inside spec files (probably the
most common usage), in special macro initialization files, and on the command line.

In each case, the syntax is slightly different.

20.1.1.1. Defining Macros in Spec Files
You can define macros in most places in a spec file. With spec files, use the %define syntax to define
a macro, which uses the following syntax:

%define name(options) body

The options are optional and can include the special values defined in Table 21-1.

Table 21-1 Special options for macros

Option Holds

Chapter 20. Customizing RPM Behavior

358

%0 The name of the macro

%1 The first argument, after processing with getopt

%2-%9 Additional arguments

%* All arguments, except for flags that have been
processed

%# Number of arguments

These options are similar to those for shell scripting.

Cross Reference

Chapter 9, Working with Spec Files covers spec files.

In addition to these options, you can use a syntax of %{-a} to hold –a if an option of –a was passed.
The syntax of %{-a*} indicates the value passed after the –a option.

You can assign a macro to the value returned by a shell command by using syntax like the following:

%(shell_command)

Note

This is similar to the $(shell_command) syntax supported by bash.

20.1.1.2. Defining Macros in Macro Initialization Files
Inside a macro file, define macros with the following syntax:

%macro_name value

Macros defined for the RPM system start with an underscore. Some older macros are left without the
leading underscore.

Note

The macros defined with an underscore are not exported into rpm headers.

The %expand built-in macro will expand the value of something else, including executing a shell
command. For example, the following sets the user’s home directory to the %home macro:

%home %{expand:%%(cd; pwd)}

Note that it is probably easier to simply set the %home macro in your per-user $HOME/.rpmmacros
file to the name of your home directory rather than try to figure this out programmatically.

20.1.1.3. Defining Macros on the Command Line
The rpm command also lets you define macros with the --define option. The basic syntax is:

$ rpm --define 'macro_name value'

Note

Do not place the leading percent sign, %, on the macro you define with --define.

Customizing Macros

359

You can evaluate a macro or a macro expression with --eval. For example:

$ rpm --eval %_usrsrc

/usr/src

20.1.2. Customizing Macros
You can add your own macro definitions, using the syntax shown in the “Defining Macros in Macro
Initialization Files” section. These macros are read on each invocation of the rpm or rpmbuild
commands.

To add your custom macros, you must edit one of the macro definition files. Table 21-2 lists the macro
definition files and their usage.

Table 21-2 RPM macro files

File Usage

/usr/lib/rpm/macros Official RPM macros

/etc/rpm/macros Per-system customizations

$HOME/.rpmmacros Per-user customizations

Note

Do not edit the /usr/lib/rpm/macros file, as this file gets overwritten when you upgrade to a new version
of rpm.

20.2. Configuring RPM Settings
RPM includes hundreds of settings based on your current system architecture, environment, and
which version of the RPM system you have installed. The old settings, called rc or rpmrc settings, are
gradually being phased out by the newer, more consistent and more powerful macros.

You can still edit the rc settings, but in most cases you should edit macros instead.

20.2.1. Viewing the current settings
To view the current settings, use the --showrc command-line option:

$ rpm –showrc

ARCHITECTURE AND OS:

build arch : i386

compatible build archs: i686 i586 i486 i386 noarch

build os : Linux

compatible build os's : Linux

install arch : i686

install os : Linux

Chapter 20. Customizing RPM Behavior

360

compatible archs : i686 i586 i486 i386 noarch

compatible os's : Linux

RPMRC VALUES:

macrofiles : /usr/lib/rpm/macros:/usr/lib/rpm/i686-linux/macros:/etc/

rpm/macros.specspo:/etc/rpm/macros.db1:/etc/rpm/macros.cdb:/etc/rpm/macros:/etc/

rpm/i686-linux/macros:~/.rpmmacros

optflags : -O2 -march=i686

This command displays the architecture and operating system information first, and then lists all the
rpmrc values, shown here truncated for space.

20.2.2. Locating the rpmrc files
The --showrc option reads in all the rpmrc files from the various locations. By default, this is /usr/lib/
rpm/rpmrc, /etc/rpm/rpmrc, and a file named .rpmrc (with a leading period) in your home directory.

These files are read in the order given, so that the later files can override settings in the earlier files.

The uses for these files are listed in Table 21-3.

Table 21-3 Uses for the rpmrc files

File Holds

/usr/lib/rpm/rpmrc RPM standard settings

/etc/rpm/rpmrc Per-system configuration

$HOME/.rpmrc Per-user configuration

Note

The file /usr/lib/rpm/rpmrc gets overwritten each time you upgrade RPM. Do not customize this file.

You can override this list of files by calling the rpm or rpmbuild commands with the --rcfile option.
This option expects a semicolon@nddelimited list of files to read in, in order. For example, if you are
working on a 686-architecture Intel platform, you can create a file with the following setting:

optflags: i686 -g

Note that this disables optimization, so it is not a good setting. (The use of this value will make the
result more visible.)

If you name this file .rpmnew and place it in your home directory, you can configure an alternate set of
files with the --rcfile option and then evaluate the new optflags setting. For example:

$ rpm --eval "%{optflags}"

-O2 -march=i386 -mcpu=i686

$ rpm --rcfile $HOME/.rpmnew --eval "%{optflags}"

Changing settings

361

-g

This example shows the value before and after changing the configuration files.

When you use the --rcfile option, only the first file listed must exist. The rest of the files are optional.
When you use the --rcfile option, however, the file /usr/lib/rpm/rpmrc is read first, and then the list of
files you provide with the --rcfile option. The file /usr/lib/rpm/rpmrc is always used.

20.2.3. Changing settings
You can edit the per-user or per-system rc files to change the settings. The format of the rpmrc files is
fairly simple but contains a few exceptions. The most basic format is:

setting: value

The settings get more complicated as the rpmrc syntax supports defining settings for multiple
architectures at once. In that case, the typical format is:

setting: uname: value

The uname portion is replaced by a value that comes from the uname(2) system call, for example,
i686 on a 686-class Intel architecture machine.

Note

In most cases, your best bet is to copy an existing setting and modify it, rather than remembering all
the exceptions.

20.2.3.1. Setting the optflags
One exception to the rule is the optflags setting, which controls C compiler options for optimization.
The format for the optflags setting is:

setting: arch value

There is no colon after the architecture. For example:

optflags: i686 -O2 -march=i686

optflags: alphaev5 -O2 -mieee -mcpu=ev5

This example sets the optimization flags for an i686 system to -O2 -march=i686 and an alphaev5
system to -O2 -mieee -mcpu=ev5. If your system is running on a 686-class processor, you will get one
set of optimization flags. If your system is running on a V5 Alpha processor, you will get a different set.

20.2.3.2. Setting the Architecture Values
The arch_canon setting builds up a table of mappings between architecture names and the numbers
used internally. The following example shows the Intel and SPARC architecture settings to 1 and 3
internally.

arch_canon: athlon: athlon 1

arch_canon: i686: i686 1

arch_canon: i586: i586 1

Chapter 20. Customizing RPM Behavior

362

arch_canon: i486: i486 1

arch_canon: i386: i386 1

arch_canon: sparc: sparc 3

arch_canon: sun4: sparc 3

arch_canon: sun4m: sparc 3

arch_canon: sun4c: sparc 3

arch_canon: sun4d: sparc 3

arch_canon: sparcv9: sparcv9 3

The arch_compat setting builds a table of compatible architectures. The format is:

arch_compat: arch: compatible_with

This sets the given architecture arch as being compatible with another architecture.

For example:

arch_compat: athlon: i686

This setting indicates that an athlon architecture is compatible with an i686. The table gets built up
further with the following Intel-architecture compatibilities:

arch_compat: i686: i586

arch_compat: i586: i486

arch_compat: i486: i386

arch_compat: i386: noarch

The os_canon setting defines a table of operating system labels and internal numeric values. The
basic syntax is:

os_canon: arch: name value

The arch comes from the uname(2) call. The name provides an RPM name for that operating system,
and the value defines an internal numeric ID for that OS, for example:

os_canon: Linux: Linux 1

os_canon: HP-UX: hpux10 6

The buildarchtranslate setting defines the operating system settings to use as the build architecture.
This value translates information from the uname(2) call to a value used by the arch_canon setting.
For example:

buildarchtranslate: athlon: i386

buildarchtranslate: i686: i386

Adding Popt Aliases

363

buildarchtranslate: i586: i386

buildarchtranslate: i486: i386

buildarchtranslate: i386: i386

buildarchtranslate: sun4c: sparc

buildarchtranslate: sun4d: sparc

buildarchtranslate: sun4m: sparc

buildarchtranslate: sparcv9: sparc

buildarchtranslate: sun4u: sparc64

20.3. Adding Popt Aliases
Popt provides a powerful library and RPM subsystem for handling the very complex RPM command-
line options. You can customize your RPM usage by defining popt aliases for complex command-line
arguments to the rpm or rpmbuild commands. A popt alias is a command-line option that expands to
other command-line options.

This technique is used internally to define quite a few command-line options to the rpm and rpmbuild
commands in terms of other, more complex options. Many of these aliases define simple command-
line options in place of more complex query format options.

Cross Reference

Chapter 4, Using the RPM Database covers the query format.

For example, the following entry defines the --requires and –R command-line options to the rpm
command:

rpm alias --requires --qf \

"[%{REQUIRENAME} %{REQUIREFLAGS:depflags} %{REQUIREVERSION}\n]" \

--POPTdesc=$"list capabilities required by package(s)"

rpm alias -R --requires

These options are set in the file /usr/lib/rpm/rpmpopt-4.1.

Note

This is specific to RPM 4.1. Other releases of RPM use the same naming format but with the current
RPM version number, such as 4.2 and so on.

20.3.1. Defining aliases
Defining aliases is pretty easy. The basic syntax is:

command_name alias option expansion

To create an alias for the rpm command, you use rpm for the command_name.

Chapter 20. Customizing RPM Behavior

364

Note

The command_name must be the name passed to the C poptGetContext function, covered in
Chapter 15, Programming RPM with C .

Follow this with alias and then the option. You will need separate aliases for the long and short
options. The expansion defines the alias in terms of other already-defined command-line parameters.

You can define some complex aliases, such as the following one to display information about a
package:

rpm alias --info --qf 'Name : %-27{NAME} Relocations: %|PREFIXES?{[%{PREFIXES}]}:{(not
relocateable)}|\n\

Version : %-27{VERSION} Vendor: %{VENDOR}\n\

Release : %-27{RELEASE} Build Date: %{BUILDTIME:date}\n\

Install date: %|INSTALLTIME?{%-27{INSTALLTIME:date}}:{(not installed) }| Build Host:
%{BUILDHOST}\n\

Group : %-27{GROUP} Source RPM: %{SOURCERPM}\n\

Size : %-27{SIZE}%|LICENSE?{ License: %{LICENSE}}|\n\

Signature : %|DSAHEADER?{%{DSAHEADER:pgpsig}}:{%|RSAHEADER?{%{RSAHEADER:pgpsig}}:
{%|SIGGPG?{%{SIGGPG:pgpsig}}:{%|SIGPGP?{%{SIGPGP:pgpsig}}:{(none)}|}|}|}|\n\

%|PACKAGER?{Packager : %{PACKAGER}\n}|\

%|URL?{URL : %{URL}\n}|\

Summary : %{SUMMARY}\n\

Description :\n%{DESCRIPTION}\n' \

--POPTdesc=$"list descriptive information from package(s)"

Popt aliases get evaluated into Linux commands, so you can use pipes and other aspects of Linux
shells in your aliases.

Cross Reference

Look closely at the examples in the /usr/lib/rpm/rpmpopt-4.1 file. This is the most complete set of popt
alias examples for RPM commands.

You can also define aliases that can set RPM macros, such as the following alias for setting the path
to the RPM database:

rpm alias --dbpath --define '_dbpath !#:+'

In this example, !#:+ was defined to behave like a shell history-editing command. With popt, this
means to grab the next command-line parameter and place it into the command defined for the alias.

To support the --help and --usage options, you can define the --POPTdesc and --POPTargs options to
the alias as shown in the previous examples. These options also support internationalization.

Customizing popt aliases

365

All together, the popt alias setting is very close to the popt option table entries used with the C
programming API.

Cross Reference

Chapter 15, Programming RPM with C shows how to program with the popt library.

20.3.2. Customizing popt aliases
Like RPM macros and settings, popt aliases are defined in a cascading set of files. The official RPM
aliases are defined in /usr/lib/rpm/rpmpopt-4.1 for rpm 4.1.

Note

Do not modify this file! The RPM system depends on this file for proper functioning. Incorrect changes
might disable many options to the rpm command.

Store per-system popt aliases in /etc/popt. Store per-user aliases in $HOME/.popt (with a leading
period).

Note

These files are shared by all applications that use popt.

For example, you can define an alias for rpm -qa that executes faster than the normal query all
packages command, by turning off the tests for digest signature verification. To do so, add the
following line to a file named .popt in your home directory:

rpm alias --qall -qa --nodigest --nosignature

Once you set up this alias, you can run the following command in place of rpm -qa:

$ rpm --qall

This should execute about one-third to one-half faster than the normal rpm -qa command.

Warning

Turning off the signature and digest tests means you are ignoring important information that pertains to
the integrity of your system. That is why the alias shown here does not override the normal -qa option,
and instead defines a new --qall option

20.4. Summary
This chapter shows the many ways you can customize RPM usage for your system or your own
personal environment. You can define RPM macros, which is the preferred way to make RPM settings.
Or you can set RPM values in the older rpmrc files, which are now mostly replaced by RPM macros.

Using popt, the powerful command-line option parser, you can define aliases to add simple options
that popt expands into whatever you define. Many of the rpm command-line options are defined this
way.

366

Chapter 21.

367

RPM Command Reference
This appendix covers:

• rpm command

• rpmbuild command

This appendix covers the syntax of the command-line options for the rpm and rpmbuild commands.

21.1. The rpm Command
The rpm command is the workhorse of the RPM system. The following sections cover options for the
major operations with the rpm command.

Table A-1 lists the query options for the rpm command.

Table A-1 rpm query options with –q or --query

Option Usage

-a, --all Query all packages

-c, --configfiles List configuration files

--changelog List changelog entries

--conflicts List capabilities this package conflicts with

-d, --docfiles List documentation files

--dump Dump out extra information on files.

-f, --file filename Query for packages owning given file

--filesbypapkg List all files in each selected package

--fileid md5_id Query for the package with the given MD5 digest

-g, --group group_name Query packages in the given group

--hdrid sha1_header_id Query for the package with the given header
identifier number, in SHA1 format

-i, --info Display a lot of package information including
description

--last Reorder the output of the rpm command to show
the most recently installed packages first

--obsoletes List capabilities this package obsoletes

-p, --package rpm_file Query the given package file or files

--pkgid md5_id Query for the package with the given MD5
package ID

--provides List capabilities provided by package

--querybynumber number Query for the given entry, by number, in the RPM
database

--qf, --queryformat format Use the given query format for displaying the
output

Chapter 21. RPM Command Reference

368

--redhatprovides capability Look in rpmdb-redhat database for packages that
provide the given capability

--redhatrequires capability Look in rpmdb-redhat database for packages that
require the given capability

-R, --requires Lists packages and capabilities that this package
depends on

--specfile specfile Query the given spec file

-s, --state Display the state of the listed files

--scripts List scripts in the package

--tid transaction_id Query for the package or packages with the
given transaction ID

--triggeredby package Query packages triggered by the given package

--triggers, --triggerscripts List trigger scripts

--whatrequires capability Query packages that require the given capability

--whatprovides capability List packages that provide the given capability

21.1.1. Upgrade, freshen, and install options
Table A-2 lists the upgrade, freshen, and installation options for the rpm command.

Table A-2 rpm upgrade, freshen, and install options

Option Usage

--aid Add any suggested packages to the list to install
or upgrade

--allfiles Install all the files, even if some might otherwise
be skipped

--badreloc Relocate files even if the package is not
relocatable

--excludedocs Skip the files marked as documentation

--excludepath path Skip files that begin with path

--force A short hand for --replacepkgs and --replacefiles

-h, --hash Print hash marks, #, periodically while performing
operation to provide some feedback

--ignorearch Ignore the architecture listed in the package

--ignoreos Ignore the operating system listed in the package

--ignoresize Skip the check to see if there is enough disk
space to install the package

--includedocs Install files marked as documentation, turned on
by default

--justdb Just update the RPM database, do not modify
any files

--nodeps Skip verification of package dependencies

--nodigest Skip verification of package and header digests

Erase options

369

--nomd5 Skip verification of file MD5 checksums

--noorder Do not reorder the list of packages to be installed
based on dependencies

--nopost Do not run post-install scripts

--nopostun Do not run post-uninstall scripts

--nopre Do not run pre-install scripts

--nopreun Do not run pre-uninstall scripts

--nosuggest Do not suggest packages for missing
dependencies

--noscripts Do not execute scripts

--nosignature Skip verification of package and header
signatures

--notriggers Do not execute trigger scripts

--notriggerin Do not run trigger install scripts

--notriggerpostun Do not run trigger post uninstall scripts

--notriggerun Do not run trigger uninstall scripts

--oldpackage Allow an upgrade to an older version of a
package

--percent Print out percentage of work completed as
command executes

--prefix directory Relocate package to directory, if package is
relocatable

--relocate old=new Relocate all paths that start with old to new, if
relocatable

--repackage Create a package from any files that would be
erased

--replacefiles Install package even if it replaces files from other
packages

--replacepkgs Install packages even if they are already installed

--test Do not install or remove packages, just see if the
command would work

Use rpm –U or --upgrade to upgrade, rpm –i or --install to install, and –F or --freshen to freshen a
package.

21.1.2. Erase options
Table A-3 lists the erase, or package removal, options for the rpm command.

Table A-3 rpm erase (removal) options with –e or --erase

Option Usage

--allmatches Remove all versions of the packages; normally
an error would occur if there is more than one

Chapter 21. RPM Command Reference

370

package of the same name and you try to erase
the package

--nodeps Skip verification of package dependencies

--noscripts Do not execute scripts

--nopostun Do not run post-uninstall scripts

--nopreun Do not run pre-uninstall scripts

--notriggers Do not execute trigger scripts

--notriggerpostun Do not run trigger post uninstall scripts

--notriggerun Do not run trigger uninstall scripts

--repackage Create a package from any files that would be
erased

--test Do not install or remove packages, just see if the
command would work

21.1.3. Signature options
Table A-4 lists the signature-related options to the rpm command.

Table A-4 rpm signature options with –K, --checksig, or --import

Option Usage

--addsign Sign packages, same as --resign

--import public_key Add given public key to the RPM database

--nodigest Skip verification of package and header digests

--nosignature Skip verification of package and header
signatures

--resign Sign packages

The --import option works on its own. The rest of the options work with one or more RPM packages.

21.1.4. Verify options
The rpm command can verify packages. This involves comparing all files installed by the package with
the information in the RPM database, and looking for differences or missing files.

Table A-5 lists the verify options to the rpm command.

Table A-5 rpm verify options with –V or --verify

Option Usage

-a, --all Verify all packages

-f, --file filename Verify packages owning given file

-g, --group group_name Verify packages in the given group

--nodeps Skip verification of package dependencies

--nodigest Skip verification of package and header digests

Database options

371

--nofiles Do not verify the files in the package

--nogroup Do not verify the group owner

--nolinkto Do not verify the link file attribute

--nomd5 Skip verification of file MD5 checksums

--nomtime Do not verify the mtime attribute

--nomode Do not verify the file mode (permissions)

--nordev Do not verify the rdev attribute

--noscripts Do not execute the verify scripts

--nosignature Skip verification of package and header
signatures

--nosize Do not verify the file size

--nouser Do not verify the owner of the file

-p, --package rpm_file Verify the given package file or files

--specfile specfile Verify the given spec file

--whatrequires capability Verify packages that require the given capability

--whatprovides capability Verify packages that provide the given capability

21.1.5. Database options
You can create a new, empty, RPM database as well as rebuild all the inverted lists used for quick
access using the database options listed in Table A-6.

Table A-6 rpm database options

Option Usage

--initdb Initialize database

--rebuilddb Rebuild all the inverted lists from the Packages
file

21.1.6. Miscellaneous options
These options can be used with any rpm command. Three of the options, --querytags, --version, and
--showrc, run on their own. The rest can be used with the other rpm options. Table A-7 lists these
miscellaneous options.

Table A-7 Miscellaneous rpm options

Option Usage

-?, --help Print the popt help information for all the
command-line options

--dbpath path_to_rpm_db Use the given directory for the RPM database,
instead of the default

-D, --define 'macro value' Define the given macro to hold the given value

-E, --eval expression Print the evaluation of the given expression

--ftpport port Use the given port number for FTP access

Chapter 21. RPM Command Reference

372

--ftpproxy host Use the given host name as a proxy for FTP
access

--httpport port Use the given port number for HTTP access

--httpproxy host Use the given host name as a proxy for HTTP
access

--macros file:file:file Read the given colon-separated files as the
macro files to define RPM macros; only the first
file must exist

--pipe command Pipe the output of the rpm command to the given
command

--querytags Print the query tag names and exit

--quiet Provide less output, normally show only errors

--rcfile file:file:file Read the given colon-separated files as the rc
files to define RPM settings; only the first file
must exist

--root directory Use directory as the top-level directory instead
of /.

--showrc Print the rpmrc and macro configuration and exit

-v, --verbose Provide more verbose output

-vv Provide even more verbose output, including
debugging information

--version Print the RPM version and exit

21.2. The rpmbuild Command
The rpmbuild command builds RPMs. Most of the options are duplicated. The options that begin
with –b build from a spec file, and the options that begin with –t build from a compressed tar archive,
commonly called a tarball.

21.2.1. Building from a spec file
Table A-8 lists the rpmbuild options for building RPMs from a spec file.

Table A-8 Options for building RPMs from a spec file

Option Usage

-ba Build all, both a binary and source RPM

-bb Build a binary RPM

-bc Build (compile) the program but do not make
the full RPM, by executing the build commands
through the %build section and stopping

-bp Prepare for building a binary RPM, by executing
the build commands through the %prep section
and stopping

-bi Execute the build commands through the
%install section and stop

Building from a compressed tar archive

373

-bl Check the listing of files for the RPM

-bs Build a source RPM only

Each of these options requires the name of a spec file at the end of the command line.

21.2.2. Building from a compressed tar archive
Table A-9 lists the rpmbuild options for working with a compressed tar archive.

Table A-9 Options for building RPMs from a compressed tar archive

Option Usage

-ta Build all, both a binary and source RPM

-tb Build a binary RPM

-tc Build (compile) the program but do not make
the full RPM, by executing the build commands
through the %build section and stopping

-tp Prepare for building a binary RPM, by executing
the build commands through the %prep section
and stopping

-ti Execute the build commands through the
%install section and stop

-tl Check the listing of files for the RPM

-ts Build a source RPM only

Each of these options requires the name of a compressed tar archive at the end of the command line.
The tar archive must contain a valid spec file inside the archive.

21.2.3. Rebuilding RPMs from source RPMs
You can use the rpmbuild command to rebuild an RPM from a source RPM with the options listed in
Table A-10.

Table A-10 Options for rebuilding RPMs from source RPMs

Option Usage

--rebuild Rebuild binary RPM from source RPM

--recompile Recompile binary RPM from source RPM

Each of these options requires the name of a source RPM file on the end of the command line.

21.2.4. Customizing the build
You can customize the rpmbuild command with the options listed in Table A-11.

Table A-11 Extra build options for the rpmbuild command

Option Usage

Chapter 21. RPM Command Reference

374

-?, --help Print the popt help information for all the
command-line options

--buildroot directory Override the default root directory for building
with directory.

--clean Remove the build tree after building

-D, --define 'macro value' Define the given macro to hold the given value

--dbpath path_to_rpm_db Use the given directory for the RPM database
instead of the default

-E, --eval expression Print the evaluation of the given expression

--macros file:file:file Read the given colon-separated files as the
macro files to define RPM macros; only the first
file must exist

--nobuild Don't really build anything, which really tests the
spec file

--pipe command Pipe the output of the rpm command to the given
command

--quiet Provide less output, normally show only errors

--rcfile file:file:file Read the given colon-separated files as the rc
files to define RPM settings; only the first file
must exist

--rmsource Remove the sources after the build

--rmspec Remove the spec file after the build

--root directory Use directory as the top-level directory instead
of /

--short-circuit With the -bc or -bi options, jumps directly to the
given stage and just executes that stage

--showrc Print the rpmrc and macro configuration and exit

--sign Sign the package with a GPG signature

--target platform Build for the given platform. May not work if you
don't have the other platform build commands,
such as cross compilers, set up. Can work for
Intel platforms with i386, i686, and so on.

-v, --verbose Provide more verbose output

-vv Provide even more verbose output, including
debugging information

--version Print the RPM version and exit

Chapter 22.

375

Spec File Syntax
This appendix covers:

• The package information tags

• Build sections

The RPM spec file is divided into two main parts: the package information tags, such as the name of
the package, and the build sections, such as the commands to compile the software.

The following sections summarize the spec file syntax.

22.1. Package Information Tags
The package information tags contain most of the header tags that you can query with the rpm
command. First and foremost, this includes a name.

The name-epoch-version-release tags, which form the NEVR used to identify packages, should all
appear in your spec file, although you can skip the Epoch tag.

Name: name

Epoch: 1

Version: version_number

Release: package_release_number

The optional Epoch tag provides an ordering for the version numbers (replacing the deprecated Serial
tag). Use this tag if RPM cannot figure out the ordering of which release comes after another.

Epoch: 42

A number of tags allow you to define who made the package and under what conditions has the
package been released:

Vendor: name_of_vendor

URL: URL_to_package_home

Copyright: package_copyright_message

Distribution: Linux_or_product_distribution

Packager: John Q. Smith <john.smith@somecompany.yow>

Group: group_for_categorizing_package

Use the Group tag to help users categorize your package.

The Icon tag allows you to provide a desktop icon for the package:

Icon: filename.xpm

A one-line summary is essential to tell users what your package is for:

Chapter 22. Spec File Syntax

376

Summary: one_line_description_of_package

You should also include a longer description section, marked by %description:

%description

Tcsh is an enhanced but completely compatible version of csh, the C

shell. Tcsh is a command language interpreter which can be used both

as an interactive login shell and as a shell script command processor.

Tcsh includes a command line editor, programmable word completion,

spelling correction, a history mechanism, job control and a C language

like syntax.

In the description section, blank lines indicate paragraphs. Lines that start with a space are not
formatted.

22.1.1. Comments
To help document your work, you can include comments (to yourself and others reading the spec file).
Any line starting with a hash character, #, holds a comment. RPM will ignore comments.

This is a comment.

In spec files, comments are used mostly to help explain your syntax choices to yourself should you
view the spec file later.

Note

Avoid percent signs, %, in comments, which may get interpreted as RPM macros. See Chapter 9,
Working with Spec Files for details.

22.1.2. Build settings
The BuildArchitectures tag names the architectures that a binary RPM will run on. See Chapter 20,
Customizing RPM Behavior for a description of the architecture settings. A special value of noarch
indicates a package that is not dependent on a particular architecture, such as a Perl or Python script.

The BuildPreReq tag lists any prerequisites for building. For example:

BuildPreReq: ncurses-devel

The Buildroot tag names the temporary directory in which to build the package. For example:

Buildroot: %{_tmppath}/%{name}-root

22.1.3. Dependency tags
Dependency tags define all the dependencies for the package, as described in Chapter 5, Package
Dependencies .

For each dependency, you can specify a capability name alone. For example:

Source files

377

Provides: capability_name

You can also provide a particular version number or indicate that your package has a dependency on
a version larger or smaller than a given number. For example:

Requires: capability_name >= version_number

Requires: capability_name <= version_number

Requires: capability_name > version_number

Requires: capability_name < version_number

Requires: capability_name == version_number

Requires: capability_name = version_number

The == and = act the same for dependencies. Both check for a version equal to the given number. You
can provide multiple items, separated by commas. For example:

Requires: python >= 1.3, perl

For add-on modules for interpreters, especially Perl, you can use the following syntax to define
capabilities:

Provides: perl(MIME-Base64)

This example provides the MIME-Base64 add-on Perl module.

You can also use or to specify more than one possibility. For example:

perl(IO-Wrap) == 4.5 or perl(IO-Wrap)-4.5

The Provides, Requires, Obsoletes, and Conflicts dependency tags all work the same for capability
names and version numbers.

Note

You can also specify BuildRequires tags for capabilities necessary to build the package, not to install
it. A BuildConflicts tag names capabilities that conflict for building, such as a particular version of the
gcc C compiler.

22.1.4. Source files
The source and patch tags identify the source files used to build the binary package. The patch tags
identify any patches used to modify the sources.

If you have more than one of a particular kind of tag, append a number. For example:

Source0: ftp://ftp.uk.linux.org/pub/linux/telnet-%{telnet_version}.tar.gz

Source2: telnet-client.tar.gz

Source3: telnet-xinetd

Source4: telnet.wmconfig

Patch1: telnet-client-cvs.patch

Chapter 22. Spec File Syntax

378

Patch5: telnetd-0.17.diff

Patch6: telnet-0.17-env.patch

Patch7: telnet-0.17-issue.patch

Patch8: telnet-0.17-sa-01-49.patch

Patch9: telnet-0.17-env-5x.patch

Patch10: telnet-0.17-pek.patch

22.2. Macros
You can define macros in your spec files to help control how the package gets built. The following
section describes these macros.

22.2.1. Variable definition macros
The %define macro allows you to define new macros from within your spec file. A common usage is
to define top-level directories with %define macros at the top of a spec file and then reference these
directories throughout the file. For example:

%define_bindir/bin

This allows you to change the setting in one place, which is very handy for directory paths used
throughout your spec files.

Cross Reference

See the section on Defining Macros in Spec Files in Chapter 22, Spec File Syntax for more on this
subject.

You can use this syntax for other things that may commonly change, such as version numbers. For
example:

%define major 2

%define minor 2

%define patchlevel 7

Version: %{major}.%{minor}.%{patchlevel}

Table B-1 lists more special macros used within spec files.

Table B-1 Special spec file macros

Macro Usage

%dump Prints out macro values

%{echo:message} Prints message to stderr

%{error:message} Prints message to stderr and returns BADSPEC

%{expand:expression} Like eval, expands expression

%{F:file_exp} Expands file_exp to a file name

Conditional macros

379

%global name value Defines a global macro

%{P:patch_exp} Expands patch_exp to a patch file name

%{S:source_exp} Expands source_exp to a source file name

%trace Toggles the printing of debugging information

%{uncompress:filename} Tests if file filename is compressed. If so,
uncompresses and includes in the given context.
If not compressed, calls cat to include file in
given context.

%undefine macro Undefines the given macro

%{warn:message} Prints message to stderr

22.2.2. Conditional macros
You can use a special syntax to test for the existence of macros. For example:

%{?macro_to_test: expression}

This syntax tells RPM to expand the expression if macro_to_test exists, otherwise ignore. A leading
exclamation point, !, tests for the non-existence of a macro:

%{!?macro_to_test: expression}

In this example, if the macro_to_test macro does not exist, then expand the expression.

The %if macro performs an if test much like scripting languages. For example:

%if %{old_5x}

%define b5x 1

%undefine b6x

%endif

A %else allows you to specify what to do if the test is not successful. For example:

%if %{old_5x}

%define b5x 1

%undefine b6x

%else

%define b6x 1

%undefine b5x

%endif

Again, use an exclamation point to negate the test. For example:

%if ! %{old_5x}

%define b5x 1

Chapter 22. Spec File Syntax

380

%undefine b6x

%endif

You can use a && for an and test. For example:

%if %{old_5x} && %{old_6x}

%{error: You cannot build for .5x and .6x at the same time}

%quit

%endif

22.2.3. Built-in macros
The following macros are built into RPM and can help allow you to place your files in the right
locations:

%_prefix /usr

%_exec_prefix %{_prefix}

%_bindir %{_exec_prefix}/bin

%_sbindir %{_exec_prefix}/sbin

%_libexecdir %{_exec_prefix}/libexec

%_datadir %{_prefix}/share

%_sysconfdir %{_prefix}/etc

%_sharedstatedir %{_prefix}/com

%_localstatedir %{_prefix}/var

%_libdir %{_exec_prefix}/lib

%_includedir %{_prefix}/include

%_oldincludedir /usr/include

%_infodir %{_prefix}/info

%_mandir %{_prefix}/man

22.3. Build Sections
After providing information about the package, you need to define the build stages, as described in
Chapter 9, Working with Spec Files and Chapter 11, Controlling the Build with rpmbuild.

22.3.1. Build preparation
The build preparation section sets the stage for the build. Usually this section has a %setup command.
For example:

Build

381

%prep

%setup -q

22.3.2. Build
The build section describes how to build the library or application. In most cases, the majority of the
instructions are in the Makefile created by the prep section, leaving a build section something like the
following:

%build

%configure

make

22.3.3. Installation
After building, the installation section holds the commands to install the library or application. For
example:

%install

rm -rf %{buildroot}

%makeinstall

22.3.4. Clean up
The clean up section usually calls the make clean command to clean up the built files. For example:

%clean

rm -rf %{buildroot}

22.3.5. Install and uninstall scripts
RPM packages can run scripts prior to installation with %pre, and after installation with %post. You can
also run scripts prior to an uninstall with %preun and after an uninstall with %postun. For example:

%post

/sbin/chkconfig --add ypbind

%preun

if ["$1" = 0] ; then

/sbin/service ypbind stop > /dev/null 2>&1

/sbin/chkconfig --del ypbind

fi

exit 0

Chapter 22. Spec File Syntax

382

%postun

if ["$1" -ge 1]; then

/sbin/service ypbind condrestart > /dev/null 2>&1

fi

exit 0

22.4. File Tags
The %files tag lists the files your package should install. For example:

%files

%defattr(-,root,root)

/usr/X11R6/bin/xtoolwait

/usr/X11R6/man/man1/xtoolwait.*

You should mark configuration and documentation files with %config and %doc, respectively. For
example:

%files

%defattr(-,root,root)

/sbin/ypbind

%{_mandir}/*/*

%config /etc/rc.d/init.d/*

%config /etc/yp.conf

%dir /var/yp

%dir /var/yp/binding

%doc README NEWS

22.4.1. Making relocatable packages
You can make a relocatable package by setting up one or more Prefix tags. For example:

Prefix: /usr

Prefix: /etc

Each file in the %files section must then start with one of the prefixes you provided. With this, installers
can easily relocate the package with a command like the following:

rpm --relocate /etc=/usr/etc file_name.rpm

The Change Log

383

22.5. The Change Log
The change log usually appears at the end of a spec file. It holds messages for each significant
change. For example:

%changelog

* Fri Jun 21 2002 Bob Marley <marley@redhat.com>

- automated rebuild

* Tue May 08 2001 Peter Tosh <tosh@redhat.com> 1.3-1

- updated to 1.3

384

Chapter 23.

385

RPM Feature Evolution
Although RPM implementations are largely compatible from version to version, RPM packagers must
remember that RPM is a still-evolving program and that its developers are adding features to it with
each new version. When producing RPM package files, packagers must keep in mind the audience
that will be using the final RPM package files. They must decide which versions of RPM they intend
the package to be used with and must use only the lowest common denominator set of features
implemented in the oldest of the RPM versions they are targeting. As a quick reference, keep in mind
the RPM features noted here and the RPM version in which they are introduced. In considering these
revisions of RPM, the main releases of interest are RPM 2.5, RPM 3.0.5, RPM 4.0.4, and RPM 4.1.

RPM 2.5 is not widely used anymore; packages should target RPM 2.5 only if the intention is for the
RPM package to install using absolutely all RPM versions.

RPM 3.0.5 is the final release of the 3.x series of RPM. It was the release of RPM shipped with
Red Hat Linux 6.2 and older releases. It is still in wide use by other vendors as well. Cobalt’s Linux
distributions use an RPM implementation version based on RPM 3.0.5, for example. (Red Hat Linux
was upgraded to RPM 4 via an errata.)

RPM 4.0.4 was used with the 7.x releases of Red Hat Linux, and RPM 4.1 first shipped with Red Hat
Linux 8.0. Packages produced targeting RPM 3.0.5 should work with nearly all implementations of
RPM still in use today. Packages produced targeting RPM 4.0.4 or RPM 4.1 will work only with recent
RPM implementations.

RPM 2.5 is the oldest version of RPM that can, by any stretch of the imagination, still be considered
in use. With RPM 2.5, most of the basic RPM features were in place, as well as more advanced
functions such as triggers and support for internationalization of Summary:, Description:, and Group:
tags in the RPM file header. RPM 2.5 was also the first version of RPM to use the RPM version 3 RPM
file format.

RPM 2.5.3 added support for Epochs to the RPM header, implementing RPMTAG_EPOCH.

RPM 2.5.4 introduced the %license and %readme file types, which can be used in the RPM spec file
to indicate license and README files.

RPM 2.5.6 added support for usage of the Epoch: keyword in the RPM spec file, allowing you to
force an Epoch for your package. The Epoch: keyword replaced the older Serial: keyword, which
semantically behaved similarly.

RPM 2.5.7 enforced the previously implied standard that the "-" character should not be used within
the Version or Release fields in the RPM spec file.

RPM 2.90 introduced support for signing and verifying RPM package files using GPG, the GNU
Privacy Guard.

RPM 2.91 allowed the usage of Provides: directives that defined absolute paths to provided files. Prior
to RPM 2.91, Provides: could be used only for listing provided capabilities, not for using statements
like Provides: /path/to/file to indicate provided files.

RPM 3.0.2 permitted usage of multiple Provides: lines for the first time, eliminating the need to
combine all provided capabilities and files on the same line in the spec file.

RPM 3.0.3 added support for versioned dependencies. Prior to RPM 3.0.3, spec files could indicate
that a package required another package or provided a specific capability, but they could not indicate

Chapter 23. RPM Feature Evolution

386

the acceptable versions of the required package or which version of the capability the package
provided.

RPM 3.0.4 introduced CompressedFileNames support to RPM. Prior to RPM 3.0.4, RPM packaged
the absolute paths of all archived files within the package file. Package file headers contained
statements such as

fileName #0: /usr/bin/ar

fileName #1: /usr/bin/as

fileName #2: /usr/bin/gasp

fileName #3: /usr/bin/gprof

With CompressedFileNames support, the RPM package file header instead stores the directory name,
then just the base name of files within that directory. Package file headers now contain statements
such as the following for a given directory with a number of files within that directory:

dirName #0: /usr/bin

baseName dirIndex

#0 ar 0

#1 as 0

#2 gasp 0

#3 gprof 0

Each file entry now holds the file's base name within the directory, as well as an index number that
refers to the directory entry. Since packages typically contain lots of files within the same directory,
CompressedFileNames support results in significant memory savings when processing packages for
installation.

RPM 3.0.5 added PayloadIsBzip2 support to RPM, allowing the data payload of RPM package files
to be compressed using bzip2 instead of gzip. Even though RPM now supports bzip2 compression
of package files, this feature is rarely used in practice, since significantly more memory and time is
required to install bzip2-compressed RPM package files than to install gzip-compressed RPM package
files. RPM 3.0.5 also added support to RPM for manipulating existing RPM version 4 file format
packages; packages produced with RPM 3.0.5 can only be RPM version 3 file format, however.

RPM 4.0 implemented several significant changes to RPM. RPM 4.0 created package files using RPM
version 4 package file format. RPM 4.0 also switched from Berkeley db 1.85 to Berkeley db 3.1 as
the database program used for creation and manipulation of the RPM database. The RPM package
database file was renamed as well. The db3 package database file is /var/lib/rpm/Packages, and the
older db1 package database file was /var/lib/rpm/packages.rpm. Changing the package database
file name allowed old and new versions to co-exist if necessary, simplifying upgrades from older
RPM releases to the new RPM 4.0 release. RPM 4.0 also introduced the PayloadFilesHavePrefix
feature, changing the way archived files are named within the RPM package file. RPM package files
contain a cpio archive of files. Prior to RPM 4.0, file names in the cpio archive were stored without a
root prefix. With PayloadFilesHavePrefix, all file names within the cpio archive files now have a root
prefix, such as ./usr/bin/ar. This modification made it possible for RPM package files to contain the root
directory, “./”. Additional sanity-checking was added to the RPM 4.0 spec file parser; beginning with

387

4.0, RPM no longer allows dangling symbolic links that contain the BuildRoot. This change eliminates
a class of common mistakes made when producing RPMs. Finally, RPM 4.0 implicitly generates
Provides: directives; whenever a package header is read, the Provides: directive Provides: %{name}
= %{epoch}:%{version}-%{release} is automatically generated, ensuring that all packages explicitly
provide themselves as a capability and removing the need to provide self-capabilities within the
package spec file.

RPM 4.0.2 introduced the use of SHA-1 message digests to validate RPM header regions.

RPM 4.0.3 added the %dev(type,major,minor) spec file directive, allowing creation of device nodes.
In addition, the %configure spec file directive now supported --target and –host, simplifying cross
compilation when using RPM. The %files directive was extended by adding the %exclude subdirective
that could be used to exclude files from inclusion. Finally, RPM 4.0.3 switched back to creating
package files in RPM version 3 package file format by default, although it still supports RPM version 4
package file format as well.

RPM 4.0.4 provided PartialHardlinkSets support. RPM package files are sometimes created which
contain multiple copies of the same file, stored as hard links to save space. Prior to RPM 4.0.4,
RPM has always treated collections of hard links as an all-or-nothing proposition; all hard links were
created, or else none were created. This behavior posed problems when some hard links in a set were
tagged with attributes such as %doc or %lang, since rpm commands make it possible to install an
RPM package file without installing any files with %doc attributes. Prior to RPM 4.0.4, doing so would
break the hard link set, preventing creation of all hard links in the set. PartialHardlinkSet corrects
this problem by allowing successful creation of subsets of the hard link set. RPM 4.0.4 also provided
automatic generation of Perl module Requires: directives. find-requires now parses all packaged Perl
scripts, generating any determined dependencies. In addition, RPM 4.0.4 provides transaction support
for RPM.

RPM 4.1 adds separate header DSA and RSA signatures, allowing verification of RPM package
headers.

Finally, when considering the RPM features required by your prepared package, remember that
some required RPM features are specified manually within the package spec file, while others are
automatically added by RPM during the RPM package file build process. For example, usage of
versioned Requires: directives in a spec file will make the resulting RPM package file correctly
installable only by RPM release 3.0.3 or later. Similarly, the preparation of any package using RPM
release 4.0 or later will automatically produce RPM package files that can only be manipulated by
releases of RPM that support the PayloadFilesHavePrefix feature. In the first case, you chose to
produce packages that worked with RPM release 3.0.5 or later but not with RPM release 2.5 by
including a new directive in the package spec file. In the second case, however, you did not explicitly
produce packages that work only with recent RPM releases. The simple fact that you built your RPM
package using RPM release 4.0 means that you automatically used features that only RPM 4.0 and
later releases understand. These automatic internal requirements are quite common in the later
versions; as a result, the best practice is to decide the oldest version of RPM that you wish to support,
then to build all packages using that version of RPM, keeping its feature set in mind as you prepare
and build the packages.

388

Chapter 24.

389

RPM Package File Structure
This appendix covers:

• RPM package file structure

• RPM header entry formats

• Payload format

This appendix describes the format of RPM package files. You can combine this information with C,
Perl, or Python data structures to access the information. In all cases, you should access elements
in an RPM file using one of the available programming libraries. Do not attempt to access the files
directly, as you may inadvertently damage the RPM file.

Cross Reference

Chapter 15, Programming RPM with C, Chapter 16, Programming RPM with Python, and Chapter 17,
Programming RPM with Perl cover programming with C, Python, and Perl, respectively.

The RPM package format described here has been standardized as part of the Linux Standards Base,
or LSB, version 1.3.

Cross Reference

The LSB 1.3 section on package file formats is available at www.linuxbase.org/spec/refspecs/
LSB_1.3.0/gLSB/gLSB.html#PACKAGEFMT.

24.1. The Package File
RPM packages are delivered with one file per package. All RPM files have the following basic format
of four sections:

*A lead or file identifier

*A signature

*Header information

*Archive of the payload, the files to install

All values are encoded in network byte order, for portability to multiple processor architectures.

24.1.1. The file identifier
Also called the lead or the rpmlead, the identifier marks that this file is an RPM file. It contains a magic
number that the file command uses to detect RPM files. It also contains version and architecture
information.

The start of the identifier is the so-called magic number. The file command reads the first few bytes of
a file and compares the values found with the contents of /usr/share/magic (/etc/magic on many UNIX
systems), a database of magic numbers. This allows the file command to quickly identify files.

The identifier includes the RPM version number, that is, the version of the RPM file format used for the
package. The identifier also has a flag that tells the type of the RPM file, whether the file contains a

Chapter 24. RPM Package File Structure

390

binary or source package. An architecture flag allows RPM software to double-check that you are not
trying to install a package for a non-compatible architecture.

24.1.2. The signature
The signature appears after the lead or identifier section. The RPM signature helps verify the integrity
of the package, and optionally the authenticity.

The signature works by performing a mathematical function on the header and archive section of the
file. The mathematical function can be an encryption process, such as PGP (Pretty Good Privacy), or
a message digest in MD5 format.

24.1.3. The header
The identifier section no longer contains enough information to describe modern RPMs. Furthermore,
the identifier section is nowhere near as flexible as today’s packages require. To counter these
deficiencies, the header section was introduced to include more information about the package.

The header structure contains three parts:

*Header record

*One or more header index record structures

*Data for the index record structures

The header record identifies this as the RPM header. It also contains a count of the number of index
records and the size of the index record data.

Each index record uses a structure that contains a tag number for the data it contains. This includes
tag IDs for the copyright message, name of the package, version number, and so on. A type number
identifies the type of the item. An offset indicates where in the data section the data for this header
item begins. A count indicates how many items of the given type are in this header entry. You can
multiply the count by the size of the type to get the number of bytes used for the header entry.

Table D-1 lists the type identifiers.

Table D-1 Header type identifiers

Constant Value Size in Bytes

RPM_NULL_TYPE 0 No size

RPM_CHAR_TYPE 1 1

RPM_INT8_TYPE 2 1

RPM_INT16_TYPE 3 2

RPM_INT32_TYPE 4 4

RPM_INT64_TYPE 5 Not supported yet

RPM_STRING_TYPE 6 Variable number of bytes,
terminated by a NULL

RPM_BIN_TYPE 7 1

RPM_STRING_ARRAY_TYPE 8 Variable, vector of NULL-
terminated strings

The header

391

RPM_I18NSTRING_TYPE 9 Variable, vector of NULL-
terminated strings

Note

Integer values are aligned on 2-byte (16-bit integers) or 4-byte (32-bit integers) boundaries.

24.1.3.1. Header Tags
Table D-2 lists the tag identifiers.

Table D-2 Header entry tag identifiers

Constant Value Type Required?

RPMTAG_NAME 1000 STRING Yes

RPMTAG_VERSION 1001 STRING Yes

RPMTAG_RELEASE 1002 STRING Yes

RPMTAG_SUMMARY 1004 I18NSTRING Yes

RPMTAG_DESCRIPTION1005 I18NSTRING Yes

RPMTAG_BUILDTIME 1006 INT32 Optional

RPMTAG_BUILDHOST 1007 STRING Optional

RPMTAG_SIZE 1009 INT32 Yes

RPMTAG_LICENSE 1014 STRING Yes

RPMTAG_GROUP 1016 I18NSTRING Yes

RPMTAG_OS 1021 STRING Yes

RPMTAG_ARCH 1022 STRING Yes

RPMTAG_SOURCERPM1044 STRING Optional

RPMTAG_FILEVERIFYFLAGS1045 INT32 Optional

RPMTAG_ARCHIVESIZE1046 INT32 Optional

RPMTAG_RPMVERSION1064 STRING Optional

RPMTAG_CHANGELOGTIME1080 INT32 Optional

RPMTAG_CHANGELOGNAME1081 STRING_ARRAY Optional

RPMTAG_CHANGELOGTEXT1082 STRING_ARRAY Optional

RPMTAG_COOKIE 1094 STRING Optional

RPMTAG_OPTFLAGS 1122 STRING Optional

RPMTAG_PAYLOADFORMAT1124 STRING Yes

RPMTAG_PAYLOADCOMPRESSOR1125 STRING Yes

RPMTAG_PAYLOADFLAGS1126 STRING Yes

RPMTAG_RHNPLATFORM1131 STRING Deprecated

RPMTAG_PLATFORM 1132 STRING Optional

Most of these tags are self-explanatory; however, a few tags hold special meaning. The
RPMTAG_SIZE tag holds the size of all the regular files in the payload. The RPMTAG_ARCHIVESIZE

Chapter 24. RPM Package File Structure

392

tag holds the uncompressed size of the payload section, including the necessary cpio headers. The
RPMTAG_COOKIE tag holds an opaque string.

According to the LSB standards, the RPMTAG_PAYLOADFORMAT must always be cpio. The
RPMTAG_PAYLOADCOMPRESSOR must be gzip. The RPMTAG_PAYLOADFLAGS must always be
9.

The RPMTAG_OPTFLAGS tag holds special compiler flags used to build the package. The
RPMTAG_PLATFORM and RPMTAG_RHNPLATFORM tags hold opaque strings.

24.1.3.2. Private Header Tags
Table D-3 lists header tags that are considered private.

Table D-3 Private header tags

Constant Value Type Required?

RPMTAG_HEADERSIGNATURES62 BIN Optional

RPMTAG_HEADERIMMUTABLE63 BIN Optional

RPMTAG_HEADERI18NTABLE100 STRING_ARRAY Yes

The RPMTAG_HEADERSIGNATURES tag indicates that this is a signature entry. The
RPMTAG_HEADERIMMUTABLE tag indicates a header item that is used in the calculation of
signatures. This data should be preserved.

The RPMTAG_HEADERI18NTABLE tag holds a table of locales used for international text lookup.

24.1.3.3. Signature Tags
The signature section is implemented as a header structure, but it is not considered part of the RPM
header. Table D-4 lists special signature-related tags.

Table D-4 Signature-related tags

Constant Value Type Required?

SIGTAG_SIGSIZE 1000 INT32 Yes

SIGTAG_PGP 1002 BIN Optional

SIGTAG_MD5 1004 BIN Yes

SIGTAG_GPG 1005 BIN Optional

SIGTAG_PAYLOADSIZE 1007 INT32 Optional

SIGTAG_SHA1HEADER 1010 STRING Optional

SIGTAG_DSAHEADER 1011 BIN Optional

SIGTAG_RSAHEADER 1012 BIN Optional

The SIGTAG_SIGSIZE tag specifies the size of the header and payload sections, while the
SIGTAG_PAYLOADSIZE holds the uncompressed size of the payload.

To verify the integrity of the package, the SIGTAG_MD5 tag holds a 128-bit MD5 checksum of the
header and payload sections. The SIGTAG_SHA1HEADER holds an SHA1 checksum of the entire
header section.

The header

393

To verify the authenticity of the package, the SIGTAG_PGP tag holds a Version 3 OpenPGP
Signature Packet RSA signature of the header and payload areas. The SIGTAG_GPG tag
holds a Version 3 OpenPGP Signature Packet DSA signature of the header and payload
areas. The SIGTAG_DSAHEADER holds a DSA signature of just the header section. If the
SIGTAG_DSAHEADER tag is included, the SIGTAG_GPG tag must also be present. The SIGTAG_
RSAHEADER holds an RSA signature of just the header section. If the SIGTAG_ RSAHEADER tag is
included, the SIGTAG_PGP tag must also be present.

24.1.3.4. Installation Tags
A set of installation-specific tags tells the rpm program how to run the pre- and post-installation scripts.
Table D-5 lists these tags.

Table D-5 Installation tags

Constant Value Type Required?

RPMTAG_PREINPROG 1085 STRING Optional

RPMTAG_POSTINPROG1086 STRING Optional

RPMTAG_PREUNPROG1087 STRING Optional

RPMTAG_POSTUNPROG1088 STRING Optional

The RPMTAG_PREINPROG tag holds the name of the interpreter, such as sh, to run the pre-install
script. Similarly, the RPMTAG_POSTINPROG tag holds the name of the interpreter to run the post-
install script. RPMTAG_PREUNPROG and RPMTAG_POSTUNPROG are the same for the uninstall
scripts.

24.1.3.5. File Information Tags
File information tags are placed in the header for convenient access. These tags describe the files in
the payload. Table D-6 lists these tags.

Table D-6 File information tags

Constant Value Type Required?

RPMTAG_OLDFILENAMES1027 STRING_ARRAY Optional

RPMTAG_FILESIZES 1028 INT32 Yes

RPMTAG_FILEMODES 1030 INT16 Yes

RPMTAG_FILERDEVS 1033 INT16 Yes

RPMTAG_FILEMTIMES 1034 INT32 Yes

RPMTAG_FILEMD5S 1035 STRING_ARRAY Yes

RPMTAG_FILELINKTOS 1036 STRING_ARRAY Yes

RPMTAG_FILEFLAGS 1037 INT32 Yes

RPMTAG_FILEUSERNAME1039 STRING_ARRAY Yes

RPMTAG_FILEGROUPNAME1040 STRING_ARRAY Yes

RPMTAG_FILEDEVICES1095 INT32 Yes

RPMTAG_FILEINODES 1096 INT32 Yes

RPMTAG_FILELANGS 1097 STRING_ARRAY Yes

Chapter 24. RPM Package File Structure

394

RPMTAG_DIRINDEXES 1116 INT32 Optional

RPMTAG_BASENAMES 1117 STRING_ARRAY Optional

RPMTAG_DIRNAMES 1118 STRING_ARRAY Optional

The RPMTAG_OLDFILENAMES tag is used when the files are not compressed, when
the RPMTAG_REQUIRENAME tag does not indicate rpmlib(CompressedFileNames).
The RPMTAG_FILESIZES tag specifies the size of each file in the payload, while the
RPMTAG_FILEMODES tag specifies the file modes (permissions) and the RPMTAG_FILEMTIMES
tag holds the last modification time for each file.

The RPMTAG_BASENAMES tag holds an array of the base file names for the files in the payload. The
RPMTAG_DIRNAMES tag holds an array of the directories for the files. The RPMTAG_DIRINDEXES
tag contains an index into the RPMTAG_DIRNAMES for the directory. Each RPM must have either
RPMTAG_OLDFILENAMES or the triple of RPMTAG_BASENAMES, RPMTAG_DIRNAMES, and
RPMTAG_DIRINDEXES, but not both.

24.1.3.6. Dependency Tags
The dependency tags provide one of the most useful features of the RPM system by allowing for
automated dependency checks between packages. Table D-7 lists these tags.

Table D-7 Dependency tags

Constant Value Type Required?

RPMTAG_PROVIDENAME1047 STRING_ARRAY Yes

RPMTAG_REQUIREFLAGS1048 INT32 Yes

RPMTAG_REQUIRENAME1049 STRING_ARRAY Yes

RPMTAG_REQUIREVERSION1050 STRING_ARRAY Yes

RPMTAG_CONFLICTFLAGS1053 INT32 Optional

RPMTAG_CONFLICTNAME1054 STRING_ARRAY Optional

RPMTAG_CONFLICTVERSION1055 STRING_ARRAY Optional

RPMTAG_OBSOLETENAME1090 STRING_ARRAY Optional

RPMTAG_PROVIDEFLAGS1112 INT32 Yes

RPMTAG_PROVIDEVERSION1113 STRING_ARRAY Yes

RPMTAG_OBSOLETEFLAGS1114 INT32 Optional

RPMTAG_OBSOLETEVERSION1115 INT32 Optional

Each of these tags comes in triples, which are formatted similarly. The RPMTAG_REQUIRENAME tag
holds an array of required capabilities. The RPMTAG_REQUIREVERSION tag holds an array of the
versions of the required capabilities. The RPMTAG_REQUIREFLAGS tag ties the two together with a
set of bit flags that specify whether the requirement is for a version less than the given number, equal
to the given number, greater than or equal to the given number, and so on. Table D-8 lists these flags.

Table D-8 Bit flags for dependencies

Flag Value

RPMSENSE_LESS 0x02

The payload

395

RPMSENSE_GREATER 0x04

RPMSENSE_EQUAL 0x08

RPMSENSE_PREREQ 0x40

RPMSENSE_INTERP 0x100

RPMSENSE_SCRIPT_PRE 0x200

RPMSENSE_SCRIPT_POST 0x400

RPMSENSE_SCRIPT_PREUN 0x800

RPMSENSE_SCRIPT_POSTUN 0x1000

The RPMTAG_PROVIDENAME, RPMTAG_PROVIDEVERSION, and RPMTAG_PROVIDEFLAGS
tags work similarly for the capabilities this package provides. The RPMTAG_CONFLICTNAME,
RPMTAG_CONFLICTVERSION, and RPMTAG_CONFLICTFLAGS tags specify the conflicts. The
RPMTAG_OBSOLETENAME, RPMTAG_OBSOLETEVERSION, and RPMTAG_OBSOLETEFLAGS
tags specify the obsoleted dependencies.

In addition, an RPM package can define some special requirements in the RPMTAG_REQUIRENAME
and RPMTAG_REQUIREVERSION tags. Table D-9 lists these requirements.

Table D-9 Special package requirement names and versions

Name Version Specifies

Lsb 1.3 The package conforms to the
Linux Standards Base RPM
format.

rpmlib(VersionedDependencies) 3.0.3-1 The package holds
dependencies or prerequisites
that have versions associated
with them.

rpmlib(PayloadFilesHavePrefix) 4.0-1 File names in the archive have
a “.” prepended on the names.

rpmlib(CompressedFileNames) 3.0.4-1 The package uses the
RPMTAG_DIRINDEXES,
RPMTAG_DIRNAME and
RPMTAG_BASENAMES tags
for specifying file names.

/bin/sh NA Indicates a requirement for
the Bourne shell to run the
installation scripts.

24.1.4. The payload
The payload, or archive, section contains the actual files used in the package. These are the files that
the rpm command installs when you install the package. To save space, data in the archive section is
compressed in GNU gzip format.

Once uncompressed, the data is in cpio format, which is how the rpm2cpio command can do its work.
In cpio format, the payload is made up of records, one per file. Table D-10 lists the record structure.

Table D-10 cpio file record structure

Chapter 24. RPM Package File Structure

396

Element Holds

cpio header Information on the file, such as the file mode
(permissions)

File name NULL-terminated string

Padding 0 to 3 bytes, as needed, to align the next element
on a 4-byte boundary

File data The contents of the file

Padding 0 to 3 bytes, as needed, to align the next file
record on a 4-byte boundary

The information in the cpio header duplicates that of the RPM file-information header elements.

Chapter 25.

397

RPM Resources
This appendix covers:

• Finding RPM sites on the Internet

• Accessing RPM newsgroups and mailing lists

This appendix covers the material available on the Internet for working with RPM.

25.1. Finding RPM Sites
There is a wealth of RPM material online, although some of it is hard to find. The following sections
list a number of RPM-related sites, divided by category. Note that as with any Internet sites, the sites
listed my change or disappear.

25.1.1. The main rpm.org site
The main RPM site is www.rpm.org. This site provides the official distributions of the RPM software, as
well as a lot of documentation online.

Table F-1 lists a number of useful links on this site.

Table F-1 Links on the rpm.org site

Link Holds

ftp://ftp.rpm.org/pub/rpm/dist/ RPM software downloads

ftp://ftp.rpm.org/pub/ rpm.org download site

www.rpm.org/cvs_help/ Instructions for accessing the RPM CVS
repository

www.rpm.org/hintskinks/ Tips for working with RPM

www.rpm.org/hintskinks/bootstrap/ Good tips on bootstrapping RPM to new
platforms

www.rpm.org/howto/ How-to documents for working with RPM

www.rpm.org/max-rpm/ Maximum RPM by Edward C. Bailey

www.rpm.org/RPM-HOWTO/ Good introductory tutorial

www.rpm.org/rpmapi-4.1/ API documentation

The main RPM FTP site, at ftp://ftp.rpm.org/pub/, includes the RPM distributions, as well as the
Berkeley DB version 3 library, and the text of the book Maximum RPM. Download RPM software from
ftp://ftp.rpm.org/pub/rpm/dist/.

25.1.2. RPM locator sites
A number of sites help you find RPMs for various applications. On the main sites, you can find
specially built RPMs for a variety of Linux distributions. You can then download the RPMs made
especially for your systems.

The main RPM-finding site is rpmfind.net, which offers a search engine as well as software you can
run on your site.

Chapter 25. RPM Resources

398

The RPM PBone Search, at http://rpm.pbone.net/, is also very useful.

The www.rpm.org/packagers/ site lists a number of places that package RPMs and provide them for
downloading.

Many Java libraries and packages are available in RPM format from www.jpackage.org/.

Table F-2 lists a number of other RPM download sites.

Table F-2 RPM download sites

Site Holds

rpmfind.net Links to a huge number of RPMs, many specific
to various Linux distributions

http://rpm.pbone.net/ RPM PBone search, useful for finding RPMs

www.rpm.org/packagers/ Lists a number of sites that provide RPMs for
download

www.javapackage.org Many Java packages in RPM format

http://plf.zarb.org/ The Penguin Liberation Front has RPMs that
for legal reasons cannot be included in the
Mandrake Linux distribution.

www.math.unl.edu/~rdieter/Projects Rex Dieter’s RPM site

www.rpmhelp.net Mandrake Linux RPMs

www.aucs.org/rpmcenter/ Edwin Chan's Red Hat RPMs

www.owlriver.com/projects/links/ Owl River Company RPMs

25.1.3. RPM tools sites
A large number of tools exist to help you work with RPMs. The following sites list some of the main
tools:

*For the vim text editor, you can download a spec.vim syntax file from http://pegasus.rutgers.edu/
~elflord/vim/syntax/spec.vim.

*For emacs, you can download an Emacs mode for spec files from http://tihlde.org/~stigb/rpm-spec-
mode.el.

Cross Reference

Chapter 26, Linux Text Editors and Development Tools lists links for a number of text editors.

*The rpmlint tool mentioned in Chapter 12, Supplemental Packaging Software is available at http://
people.mandrakesoft.com/~flepied/projects/rpmlint/.

Table F-3 lists a number of RPM-related tools and the sites you can find more information on the tools.

Table F-3 RPM-related tools

Tool Site

apt-rpm ftp://ftp.conectiva.com/pub/conectiva/
EXPERIMENTAL/apt/

Programming sites

399

apt4rpm http://apt4rpm.sourceforge.net/

AutoRPM www.autorpm.org

AutoUpdate www.mat.univie.ac.at/~gerald/ftp/autoupdate

current www.biology.duke.edu/computer/unix/current/

kpackage www.kde.org

MakeRPM.pl www.perl.com/CPAN/modules/by-authors/id/
JWIED

poldek http://poldek.pld.org.pl/

rpm2html rpmfind.net/linux/rpm2html/

rpmfind rpmfind.net

RUST www.rusthq.com

setup.sh www.mmedia.is/~bre/programs/setup.sh

urpmi www.linux-mandrake.com/cooker/urpmi.html

25.1.4. Programming sites
Only a few sites exist to help developers with programming for RPM. I maintain some quick links to
RPM sites at www.pconline.com/~erc/rpm.htm. Most of these links are focused for programming with
RPM.

The best sites for programming RPM are the online API documentation at www.rpm.org/rpmapi-4.1/
for the RPM 4.1 release, and the ftp.rpm.org/pub/rpm/dist/ site for downloading the RPM sources.
There is a lot of documentation bundled with the source code.

Cross Reference

Chapter 26, Linux Text Editors and Development Tools lists links for a number of Integrated
Development Environments, or IDEs, aimed at programmers.

25.1.5. Sites related to RPM
If you try to make cross-platform RPMs, especially RPMs that should work for multiple versions of
Linux, it is very important to follow the Linux standards for things like file placement and package
formats.

The Filesystem Hierarchy Standard, or FHS, covers Linux directory layout at www.pathname.com/fhs/.

The Linux Standards Base is working on standardizing on the RPM package file format. See
www.linuxbase.org for details.

25.2. Accessing RPM Mailing Lists and Newsgroups
The RPM mailing list provides the best source of technical RPM information. You can post questions
and get quick, useful responses. If you are working with RPM, you should subscribe to this mailing
list. For details on viewing the RPM mailing list archives and signing up for the list, see www.rpm.org/
mailing_list/.

To help avoid unwanted commercial e-mail (in other words, spam), you need to register with a user
name and password to subscribe to the mailing list or view the archives.

Chapter 25. RPM Resources

400

A Usenet newsgroup, named linux.redhat.rpm, also provides a forum for asking RPM-related
questions. You can read this newsgroup with any newsreading program.

Chapter 26.

401

Linux Text Editors and Development
Tools
This appendix covers:

• General text editors

• C-specific tools and integrated development environments

• Python-specific development tools

Linux includes a number of text editors and integrated development environments (IDEs), going from
plain old text editors all the way up to sophisticated tools. These tools are suitable for shell scripting,
C, Python, and Perl programming, along with a plethora of other uses. Linux makes extensive use of
text files, especially for configuration data, so Linux has always included a number of text editors.

This appendix lists a number of tools for those who have not yet set up an RPM development
environment on Linux. Note that choosing an editor or IDE is mostly a matter of personal taste.
Programmers will often engage in raging battles over the superiority of text editors and other
programming tools. Before searching around too far, try out what you have installed on your system
and see if that works for you.

Note that Internet sites may change or disappear, so you may have to search to find these tools.

26.1. General Text Editors
Linux distributions include a number of text editors with varying sets of features. The two most
common editors are vi and emacs, which come with virtually all Linux distributions. These editors are
good for UNIX- or Linux-savvy developers, but generally have a steep learning curve for developers
used only to Windows.

If you come from Windows, try gedit, kedit, or kate. These text editors open a graphical window on
your desktop, making them appear more or less like the Windows Notepad.exe. All three offer more
features than Notepad.exe, however.

You may not have installed any of these editors, but all are available as part of Red Hat Linux. You can
install vi, emacs, gedit, kedit, or kate from the packages that come with your Linux distribution.

To start one of the editors, enter a command like the following:

$ gedit listrpmpkgs &

The ampersand, &, launches the program in the background. Replace gedit with the editor you
choose.

26.2. Programming Text Editors
In addition to general-purpose text editors, Linux sports a large number of text editors with special
features for programming, such as syntax highlighting. The extended version of vi, called vim, includes
a number of add-ons that can help you with C programming tasks. Emacs also includes a wide array
of features to help programming. Both of these editors can act as development environments with a bit
of configuration. As mentioned previously, both come with most Linux distributions.

Chapter 26. Linux Text Editors and Development Tools

402

I also like an editor called nedit and another one called jedit. The jedit editor is written in Java, so that
it runs the same on Windows and Linux, a big win if you must work on multiple platforms. (Emacs and
vim have versions that work on Windows, too, along with Linux.) If you use jedit, you must have a Java
runtime environment installed.

Cross Reference

Download nedit from www.nedit.org. Download jedit from www.jedit.org. Download Java runtime
environments from Sun at http://java.sun.com/j2se/downloads.html or IBM at www.ibm.com/java/jdk/
and select the IBM Developer Kit for Linux.

26.3. Integrated Development Environments for C
Programming
If you want more of a graphical environment, Red Hat Linux ships with KDevelop, an IDE for C and C+
+ programming.

Anjuta provides a GTK/GNOME-based IDE, an alternative to the KDE-based KDevelop. KDevelop,
however, supports KDE, GNOME, Qt, and text-mode C and C++ applications.

Cross Reference

Download Anjuta from www.anjuta.org.

The Eclipse IDE, while mostly used for Java development, has a C and C++ mode called CDT, for C/
C++ Development Tools. Eclipse is important because Red Hat provides an RPM-building plug-in to
Eclipse.

Cross Reference

Download Anjuta from www.anjuta.org. Download Eclipse from www.eclipse.org and the Eclipse CDT
from www.eclipse.org/tools/downloads.html.

26.4. Integrated Development Environments for Python
Programming
As with C programs, Python scripts are made up of text files holding Python commands, so you need
a text editor or some sort of development environment for creating Python programs. Any of the tools
listed so far will work fine for developing Python applications. The key requirement is the ability to
control tabs and indenting, since this is crucial to Python syntax.

IDLE, a graphical console and editor, supports creating Python applications. This is considered part of
Python. IDLE requires the Python-tools package.

In addition, you can choose from Python-focused tools such as Bicycle Repair Man, a refactoring tool,
or Boa Constructor and Black Adder, two Python IDEs.

Cross Reference

Boa Constructor is available from http://boa-constructor.sourceforge.net. Black Adder is a commercial
tool available at www.thekompany.com.

Integrated Development Environments for Python Programming

403

The Eclipse IDE, mentioned previously, supports a number of Python add-ons. Combined with the C
and C++ tools, and plug-ins for building RPMs, Eclipse brings together most everything you need for
Python development on Linux.

Cross Reference

Eclipse is available at www.eclipse.org, and Python add-ons at http://sourceforge.net/projects/
pyeclipse, http://sourceforge.net/projects/pe4eclipse, or http://www.kalab.com/freeware/pythoneclipse/
pythoneclipse.htm.

This is really just the tip of the iceberg when it comes to Python tools. You can find many more
available on the Internet.

Cross Reference

A large listing of Python editing tools appears at http://www.python.org/cgi-bin/moinmoin/
PythonEditors.

404

Chapter 27.

405

Licensing RPM
When incorporating someone else's existing code into your software project, you should always
examine the license of the code carefully, make sure you understand its implications, and make sure
you are willing to abide by them. You also need to make sure you have the legal right to incorporate
the other code in your project. This is true for commercial code and commercial projects, and it is
equally true for freely licensed code and free software projects.

RPM itself and most discussed helper applications (rpmlint, rpm-spec-mode, and so forth) are free
software, meaning that the programs themselves are available without cost. In addition, most of these
tools are considered open source software, which means the source code for the applications are also
available.

These facts do not mean that they are unlicensed software, or that their source code can be used in
any desired fashion. RPM and these helper applications are made freely available in both source and
binary formats under the terms of the GNU Project's General Public License (GPL). Parts of RPM are
licensed under the LGPL, the Lesser General Public License. The terms of the GPL are reproduced
here, and should be consulted before incorporating any source code or binaries licensed under the
GPL into your projects. Essentially, the GPL states that you can use GPL'ed source code or binaries
for any purpose, so long as you always give those same rights (including access to your program’s
source code) to any users to whom you give software derived from GPL'ed source code (though a
lawyer should be consulted to obtain an analysis of the implications of the GPL on your project, should
you decide to use GPL'ed code in any commercially licensed project you might undertake).

27.1. The GNU General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation's software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

Chapter 27. Licensing RPM

406

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0.This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1.You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2.You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

The GNU General Public License

407

a)You must cause the modified files to carry prominent notice stating that you changed the files and
the date of any change.

b)You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c)If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3.You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a)Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b)Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c)Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,

Chapter 27. Licensing RPM

408

kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4.You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

5.You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works based on it.

6.Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7.If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8.If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

The GNU General Public License

409

9.The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10.If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11.BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) 19yy <name of
author>

Chapter 27. Licensing RPM

410

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than `show w' and
`show c'; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

411

Appendix A. Revision History
Revision 1.0

412

413

Index

414

	RPM Guide
	Table of Contents
	Introducing Package Management
	1. Installing, Removing, and Upgrading Applications
	2. Overcoming the Installation Obstacles
	2.1. Application-level utilities
	2.2. Built-in system utilities

	3. Linux Software Management Tools: Packages
	4. Summary

	Chapter 1. Introduction to RPM
	1.1. The Need for Linux Package Management Systems
	1.2. RPM Design Goals
	1.2.1. Ease of use
	1.2.2. Package-oriented focus
	1.2.3. Package upgradability
	1.2.4. Package interdependencies
	1.2.5. Query capabilities
	1.2.6. Package verification
	1.2.7. Multiple architectures
	1.2.8. Pristine sources

	1.3. RPM Terminology
	1.4. Summary

	Chapter 2. RPM Overview
	2.1. Understanding the Package File
	2.1.1. RPM file format
	2.1.2. Binary RPMs and Source RPMs
	2.1.2.1. binary RPMs

	2.1.3. Source RPMs

	2.2. Querying the RPM Database
	2.3. Running RPM Commands
	2.3.1. Working with the rpm command
	2.3.2. Other RPM commands

	2.4. Summary

	Chapter 3. Using RPM
	3.1. The rpm Command
	3.2. Upgrading and Installing Software
	3.2.1. Upgrading with the rpm command
	3.2.1.1. Checking That the Package Is Installed
	3.2.1.2. Getting Feedback During Installation and upgrades
	3.2.1.3. The Installation Task In Detail
	3.2.1.4. Taking a Test Drive
	3.2.1.5. Installing or upgrading More Than One Package At A Time
	3.2.1.6. Installing in Different Directories
	3.2.1.7. Forcing the Issue
	3.2.1.8. Skipping the Scripts
	3.2.1.9. Ignorance Is Bliss
	3.2.1.10. Documentation? What Documentation?

	3.2.2. Upgrading packages
	3.2.2.1. Options When Upgrading
	3.2.2.2. Smart Upgrades

	3.2.3. Freshening up
	3.2.4. Installing Packages
	3.2.5. Installing Over the Internet
	3.2.5.1. Installing Using FTP
	3.2.5.2. Installing Using HTTP

	3.2.6. Installing source RPMs
	3.2.6.1. Open-source Software

	3.3. Removing Software
	3.3.1. Checking that the package has been removed
	3.3.2. Removing multiple packages at a time
	3.3.3. Options when removing packages

	3.4. Other rpm Command Options
	3.5. Summary

	Chapter 4. Using the RPM Database
	4.1. Querying the RPM Database
	4.1.1. Querying packages
	4.1.2. Querying everything
	4.1.3. Refining the query
	4.1.3.1. Piping the Output To grep
	4.1.3.2. Querying with Wildcards

	4.1.4. Finding which packages own files

	4.2. Getting Information on Packages
	4.2.1. Describing packages
	4.2.2. Package groups
	4.2.3. Listing the files in a package
	4.2.4. Listing the configuration files for a package
	4.2.5. Listing the documentation files for a package
	4.2.6. Listing the state of the files in a package
	4.2.7. Listing the scripts in a package
	4.2.8. Listing what has changed
	4.2.9. Combining queries
	4.2.9.1. Listing Package Description and Documentation Files
	4.2.9.2. Listing the State of Configuration Files
	4.2.9.3. Listing the Most Recently Installed Packages

	4.2.10. Creating custom queries
	4.2.10.1. Working With Query Format Tags
	4.2.10.2. Querying for Package Information
	4.2.10.3. Formatting Arrays
	4.2.10.4. Special Formatting
	4.2.10.5. Querying for Package Dependencies
	4.2.10.6. Querying for File Information
	4.2.10.7. Other Query Format Tags

	4.2.11. Other queries

	4.3. Getting Information on Package Files
	4.4. Verifying Installed RPM Packages
	4.4.1. Verifying your entire system
	4.4.2. Controlling the verification

	4.5. Working With the RPM Database
	4.5.1. Backing up the RPM database
	4.5.2. Rebuilding the RPM database
	4.5.3. Creating a new RPM database

	4.6. Summary

	Chapter 5. Package Dependencies
	5.1. Understanding the Dependency Concept
	5.1.1. Capabilities
	5.1.2. Version dependencies
	5.1.3. Conflicts
	5.1.4. Obsoletes

	5.2. Checking for Dependencies
	5.2.1. Determining the capabilities a package requires
	5.2.2. Determining the capabilities a package provides
	5.2.3. Checking for conflicts
	5.2.4. Determining which packages require a certain capability
	5.2.5. Determining which package provides a certain capability

	5.3. Triggers
	5.4. Summary

	Chapter 6. Transactions
	6.1. Understanding Transactions
	6.1.1. When do you need transactions?
	6.1.2. Backing out of transactions

	6.2. Transactions with the rpm Command
	6.2.1. Transaction IDs
	6.2.1.1. Viewing RPM Transaction IDs
	6.2.1.2. Viewing the Packages Associated with a Transaction ID

	6.2.2. Rolling Back Transactions

	6.3. Saving Old Packages
	6.4. Summary

	Chapter 7. RPM Management Software
	7.1. Locating RPMs
	7.1.1. rpmfind and rpm2html
	7.1.2. RPM Sites On the Internet
	7.1.2.1. rpmfind.net
	7.1.2.2. freshrpms.net
	7.1.2.3. RPM PBone Search
	7.1.2.4. Other Sites

	7.2. Graphical RPM Management
	7.2.1. Nautilus
	7.2.2. Red Hat Package Management
	7.2.3. KPackage
	7.2.4. Gnome-RPM

	7.3. Extending RPM Management
	7.3.1. AutoRPM
	7.3.2. AutoUpdate
	7.3.3. The Red Hat Network and up2date
	7.3.4. Current
	7.3.5. urpmi and RpmDrake
	7.3.6. apt-rpm
	7.3.7. The poldek

	7.4. Summary

	Chapter 8. Creating RPMs: An Overview
	8.1. Preparing to Build RPMs
	8.1.1. Planning what you want to build
	8.1.2. Gathering the software to package
	8.1.3. Creating a reproducible build of the software
	8.1.3.1. Unpacking Software
	8.1.3.2. Reading the README
	8.1.3.3. Building Programs with Linux Build Tools
	8.1.3.3.1. imake
	8.1.3.3.2. The configure script
	8.1.3.3.3. Building Perl modules

	8.1.4. Planning for Upgrades
	8.1.5. Outlining Any Dependencies

	8.2. Building RPMs
	8.2.1. Setting up the directory structure
	8.2.2. Placing your sources into the directory structure
	8.2.3. Creating the spec file
	8.2.3.1. The introduction section
	8.2.3.2. The prep section
	8.2.3.3. The build section
	8.2.3.4. The install section
	8.2.3.5. The clean section
	8.2.3.6. The files section

	8.2.4. Building RPMs with the rpmbuild command

	8.3. Verifying Your RPMS
	8.4. Summary

	Chapter 9. Working with Spec Files
	9.1. Reading Spec Files
	9.2. Writing Spec Files
	9.2.1. Comments
	9.2.2. Storing spec files on disk

	9.3. Defining Package Information
	9.3.1. Describing the package
	9.3.1.1. Naming the Package
	9.3.1.2. Specifying Company Information
	9.3.1.3. Filling in the Description
	9.3.1.4. Specifying the Platform Architecture

	9.3.2. Setting build locations
	9.3.3. Naming source files
	9.3.4. Naming patches

	9.4. Controlling the Build
	9.4.1. Preparing for the build
	9.4.2. Building the software
	9.4.3. Installing the software
	9.4.4. Cleaning up after the build
	9.4.5. Defining installation scripts

	9.5. Filling the List of Files
	9.5.1. Using wildcards
	9.5.2. Naming directories of files
	9.5.3. Marking files as documentation or configuration files
	9.5.4. Setting file attributes
	9.5.5. Verifying the %files section
	9.5.6. Filling the list of files automatically
	9.5.7. Handling RPM build errors for unpackaged files

	9.6. Adding Change Log Entries
	9.7. Defining Spec File Macros
	9.7.1. Built-in macros
	9.7.2. Spec file-specific macros
	9.7.3. Defining new macros
	9.7.4. Specifying parameters to macros

	9.8. Creating XML Spec Files
	9.9. Summary

	Chapter 10. Advanced RPM Packaging
	10.1. Defining Package Dependencies
	10.1.1. Naming dependencies
	10.1.1.1. Specifying the Version of the Dependencies
	10.1.1.2. Creating Virtual CAPABILITIES
	10.1.1.3. Naming Dependencies on Script Engines and Modules

	10.1.2. Setting prerequisites
	10.1.3. Naming build dependencies
	10.1.4. Generating dependencies automatically

	10.2. Setting Triggers
	10.3. Writing Verification Scripts
	10.4. Creating Subpackages
	10.4.1. Providing information for subpackages
	10.4.2. Defining scripts for subpackages
	10.4.3. Building subpackages

	10.5. Creating Relocatable Packages
	10.5.1. Setting up the prefixes
	10.5.2. Define the files section
	10.5.3. Problems creating relocatable packages

	10.6. Defining Conditional Builds
	10.6.1. Defining conditional macros
	10.6.2. Using conditional blocks
	10.6.3. Using architecture-based conditionals

	10.7. Summary

	Chapter 11. Controlling the Build with rpmbuild
	11.1. Building RPMs with the rpmbuild Command
	11.1.1. Customizing the build
	11.1.2. Testing the build
	11.1.3. Debugging the build
	11.1.4. Cleaning up
	11.1.5. Building for other platforms

	11.2. Building RPMs Without an External Spec File
	11.2.1. Options for working with tar archives
	11.2.2. The expected archive structure

	11.3. Working with Source RPMs
	11.3.1. Rebuilding binary RPMS from source RPMs
	11.3.2. Recompiling binaries from source RPMs
	11.3.3. SRPMS? Finding source RPMs

	11.4. Signing Built RPMs
	11.4.1. Checking that the GPG software is installed
	11.4.2. Configuring a signature
	11.4.3. Signing with the rpmbuild command
	11.4.4. Signing with the rpm command
	11.4.5. Verifying signatures
	11.4.6. Importing public keys
	11.4.7. Getting the Red Hat public key

	11.5. Summary

	Chapter 12. Supplemental Packaging Software
	12.1. Packaging Aids
	12.1.1. Using VIM spec plugins to improve spec file editing
	12.1.2. Adding functions with emacs rpm-spec-mode
	12.1.3. Validating and debugging spec files with rpmlint
	12.1.4. Generating the %files section with RUST
	12.1.5. setup.sh and MakeRPM.pl
	12.1.6. Manipulating Package Files with rpm2cpio

	12.2. Summary

	Chapter 13. Packaging Guidelines
	13.1. Avoiding Common Problems
	13.1.1. Scan the mailing lists
	13.1.2. Use rpmbuild
	13.1.3. Don’t try to defeat the system
	13.1.4. Turn off automatic dependency generation
	13.1.5. Don't list directories in %files
	13.1.6. Handling circular dependencies

	13.2. Following Good Practices
	13.2.1. Preparation
	13.2.1.1. Create a Source RPM
	13.2.1.2. Start with Pristine Sources
	13.2.1.3. Decide What Goes In Each Package
	13.2.1.4. Create a Test RPM Database

	13.2.2. Building
	13.2.2.1. Use Tools
	13.2.2.2. Never Build RPMs as Root
	13.2.2.3. Create a Digital Signature
	13.2.2.4. Copy Smartly
	13.2.2.5. Set Up the BuildRoot
	13.2.2.6. Add changelog entries for each new version
	13.2.2.7. Define the Group For Your Package

	13.3. Summary

	Chapter 14. Automating RPM with Scripts
	14.1. Scripting
	14.2. Distinguishing Scripting Languages from Programming Languages
	14.3. Deciding When to Program and When to Script
	14.4. Shell Scripting Basics
	14.4.1. Writing a script
	14.4.2. Running a script
	14.4.3. Problems running scripts
	14.4.4. Turning a script into a command
	14.4.5. Passing command-line options to your script

	14.5. Examining RPM Files
	14.6. Querying the RPM Database
	14.6.1. Querying for all packages installed at the same time
	14.6.2. Reading HTML documentation for a package

	14.7. Where to Go From Here
	14.8. Summary

	Chapter 15. Programming RPM with C
	15.1. Programming with the C Library
	15.1.1. Setting Up a C Programming Environment
	15.1.2. Setting Up the RPM Programming Environment
	15.1.3. Using the RPM Library
	15.1.4. Compiling and Linking RPM Programs
	15.1.4.1. Include Files
	15.1.4.2. Libraries

	15.1.5. Getting information on your RPM environment
	15.1.5.1. Printing the Configuration
	15.1.5.2. Expanding the Value of Macros
	15.1.5.3. Expanding Macros in Your Code

	15.2. The Power of popt
	15.2.1. Popt aliases
	15.2.2. Programming with popt
	15.2.2.1. Filling in the Options Table
	15.2.2.2. Popt Callbacks
	15.2.2.3. Special Option Table Flags
	15.2.2.4. Magic Options
	15.2.2.5. Parsing the Command-Line Options
	15.2.2.6. Walking Through the Command-Line Options

	15.2.3. Handling Errors
	15.2.4. Running a popt example
	15.2.5. Handling rpm command-line options

	15.3. Working with RPM Files
	15.3.1. Opening RPM files
	15.3.2. Reading the RPM lead and signature
	15.3.3. Reading header information
	15.3.4. A shortcut to header information
	15.3.5. Closing RPM files

	15.4. Programming with the RPM Database
	15.4.1. Database iterators
	15.4.2. Dependency Sets

	15.5. Comparing an RPM File to an Installed Package
	15.6. Where to Go from Here
	15.7. Summary

	Chapter 16. Programming RPM with Python
	16.1. Setting Up a Python Development Environment
	16.1.1. Installing the base Python packages
	16.1.2. Using Python for graphics

	16.2. The Python API Hierarchy
	16.3. Programming with the RPM Database
	16.3.1. Accessing the RPM database
	16.3.1.1. Setting the Database Location
	16.3.1.2. Initializing, Rebuilding, and Verifying the Database

	16.3.2. Querying the RPM database
	16.3.3. Examining the package header
	16.3.3.1. The hdr Class
	16.3.3.2. Printing Header Information with sprintf

	16.3.4. Querying for specific packages
	16.3.5. Printing information on packages
	16.3.6. Refining queries

	16.4. Reading Package Files
	16.4.1. Reading headers from package files
	16.4.2. Setting the verification flags

	16.5. Dependency Comparisons
	16.6. Installing and Upgrading Packages
	16.6.1. Building up the transaction set
	16.6.2. Transaction elements
	16.6.3. Checking and reordering the transaction elements
	16.6.3.1. Checking the Dependencies
	16.6.3.2. Transaction Check Method Callbacks
	16.6.3.3. Reordering the Transaction Set

	16.6.4. Running the transaction
	16.6.4.1. Transaction run Method Callbacks
	16.6.4.2. Coding A Sample Callback
	16.6.4.3. Upgrading A Package

	16.7. Where to Go from Here
	16.8. Summary

	Chapter 17. Programming RPM with Perl
	17.1. Getting and Using the Perl RPM Modules
	17.2. Working with RPM Files
	17.2.1. Opening package files
	17.2.2. Listing tags from the package
	17.2.3. Convenience methods
	17.2.4. Listing the name and version
	17.2.5. Checking whether the package is a source package

	17.3. Programming with the RPM Database
	17.3.1. Opening the database
	17.3.2. Finding packages
	17.3.3. Iterating over packages
	17.3.4. Additional query subroutines
	17.3.5. Getting information on packages
	17.3.5.1. Listing the Installed Date
	17.3.5.2. Handling String Array Tags
	17.3.5.3. Listing the Files In A Package

	17.3.6. Comparing versions
	17.3.7. Closing the database

	17.4. Where to Go from Here
	17.5. Summary

	Chapter 18. Using RPM on Non-Red Hat Linuxes
	18.1. Troubleshooting RPM Installation Issues
	18.1.1. Dealing with RPM versions
	18.1.2. Dealing with divisions of software into packages
	18.1.3. Dealing with dependency issues
	18.1.4. Dealing with install locations
	18.1.5. When all else fails, rebuild from the source package

	18.2. Handling Problems Building RPMs
	18.2.1. Writing distribution-specific packages
	18.2.2. Dealing with automatic dependency generation
	18.2.3. Dealing with different macros
	18.2.4. Making relocatable packages
	18.2.5. Creating an RPM build environment
	18.2.5.1. Detecting Vendors
	18.2.5.2. Build environment and macros
	18.2.5.3. Compatibility and Glue Packages
	18.2.5.4. Dealing with Signatures

	18.3. Dealing with Non-RPM-Based Linux Versions
	18.3.1. Handling non-RPM packages with alien

	18.4. Standardizing RPMs
	18.4.1. Filesystem Hierarchy Standard
	18.4.2. RPM adoption

	18.5. Summary

	Chapter 19. RPM on Other Operating Systems
	19.1. Running RPM on Other Operating Systems
	19.1.1. Getting RPM for your system
	19.1.2. Running RPM on Windows

	19.2. Bootstrapping RPM On Other Operating Systems
	19.2.1. Downloading the RPM software
	19.2.2. Extracting the software
	19.2.3. Reading the INSTALL file
	19.2.4. Libraries required by RPM
	19.2.5. Tools for building RPM
	19.2.6. Compiling RPM
	19.2.7. Handling problems

	19.3. Setting Up the RPM System
	19.3.1. Setting up the RPM database
	19.3.1.1. Initializing an Empty RPM Database
	19.3.1.2. Handling Dependencies for Packages Installed Without RPM
	19.3.1.3. Setting Up A Virtual Package
	19.3.1.4. Creating a Virtual Package Manually

	19.3.2. Creating the RPM environment

	19.4. Creating Non-Linux RPMS
	19.4.1. Setting up a build environment
	19.4.2. Cross-building packages

	19.5. Summary

	Chapter 20. Customizing RPM Behavior
	20.1. Customizing with RPM Macros
	20.1.1. Defining macros
	20.1.1.1. Defining Macros in Spec Files
	20.1.1.2. Defining Macros in Macro Initialization Files
	20.1.1.3. Defining Macros on the Command Line

	20.1.2. Customizing Macros

	20.2. Configuring RPM Settings
	20.2.1. Viewing the current settings
	20.2.2. Locating the rpmrc files
	20.2.3. Changing settings
	20.2.3.1. Setting the optflags
	20.2.3.2. Setting the Architecture Values

	20.3. Adding Popt Aliases
	20.3.1. Defining aliases
	20.3.2. Customizing popt aliases

	20.4. Summary

	Chapter 21. RPM Command Reference
	21.1. The rpm Command
	21.1.1. Upgrade, freshen, and install options
	21.1.2. Erase options
	21.1.3. Signature options
	21.1.4. Verify options
	21.1.5. Database options
	21.1.6. Miscellaneous options

	21.2. The rpmbuild Command
	21.2.1. Building from a spec file
	21.2.2. Building from a compressed tar archive
	21.2.3. Rebuilding RPMs from source RPMs
	21.2.4. Customizing the build

	Chapter 22. Spec File Syntax
	22.1. Package Information Tags
	22.1.1. Comments
	22.1.2. Build settings
	22.1.3. Dependency tags
	22.1.4. Source files

	22.2. Macros
	22.2.1. Variable definition macros
	22.2.2. Conditional macros
	22.2.3. Built-in macros

	22.3. Build Sections
	22.3.1. Build preparation
	22.3.2. Build
	22.3.3. Installation
	22.3.4. Clean up
	22.3.5. Install and uninstall scripts

	22.4. File Tags
	22.4.1. Making relocatable packages

	22.5. The Change Log

	Chapter 23. RPM Feature Evolution
	Chapter 24. RPM Package File Structure
	24.1. The Package File
	24.1.1. The file identifier
	24.1.2. The signature
	24.1.3. The header
	24.1.3.1. Header Tags
	24.1.3.2. Private Header Tags
	24.1.3.3. Signature Tags
	24.1.3.4. Installation Tags
	24.1.3.5. File Information Tags
	24.1.3.6. Dependency Tags

	24.1.4. The payload

	Chapter 25. RPM Resources
	25.1. Finding RPM Sites
	25.1.1. The main rpm.org site
	25.1.2. RPM locator sites
	25.1.3. RPM tools sites
	25.1.4. Programming sites
	25.1.5. Sites related to RPM

	25.2. Accessing RPM Mailing Lists and Newsgroups

	Chapter 26. Linux Text Editors and Development Tools
	26.1. General Text Editors
	26.2. Programming Text Editors
	26.3. Integrated Development Environments for C Programming
	26.4. Integrated Development Environments for Python Programming

	Chapter 27. Licensing RPM
	27.1. The GNU General Public License

	Appendix A. Revision History
	Index

